MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ge0div Structured version   Visualization version   GIF version

Theorem nn0ge0div 11431
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
nn0ge0div ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))

Proof of Theorem nn0ge0div
StepHypRef Expression
1 nn0ge0 11303 . . 3 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
21adantr 481 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ 𝐾)
3 elnnz 11372 . . . 4 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
4 nn0re 11286 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
54adantr 481 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐾 ∈ ℝ)
6 zre 11366 . . . . . 6 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
76ad2antrl 763 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐿 ∈ ℝ)
8 simprr 795 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 0 < 𝐿)
95, 7, 83jca 1240 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
103, 9sylan2b 492 . . 3 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
11 ge0div 10875 . . 3 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
1210, 11syl 17 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
132, 12mpbid 222 1 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1988   class class class wbr 4644  (class class class)co 6635  cr 9920  0cc0 9921   < clt 10059  cle 10060   / cdiv 10669  cn 11005  0cn0 11277  cz 11362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-n0 11278  df-z 11363
This theorem is referenced by:  fldivnn0  12606  divfl0  12608  faclimlem3  31606  faclim  31607  iprodfac  31608
  Copyright terms: Public domain W3C validator