![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm01 | Structured version Visualization version GIF version |
Description: Meet with lattice zero is zero. (chm0 28478 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
olm0.m | ⊢ ∧ = (meet‘𝐾) |
olm0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olm01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olm0.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2651 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ollat 34818 | . . 3 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
5 | simpr 476 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | olop 34819 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
8 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
9 | 1, 8 | op0cl 34789 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
12 | 1, 11 | latmcl 17099 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
13 | 4, 5, 10, 12 | syl3anc 1366 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
14 | 1, 2, 11 | latmle2 17124 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
15 | 4, 5, 10, 14 | syl3anc 1366 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
16 | 1, 2, 8 | op0le 34791 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
17 | 6, 16 | sylan 487 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
18 | 1, 2 | latref 17100 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
19 | 4, 10, 18 | syl2anc 694 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
20 | 1, 2, 11 | latlem12 17125 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
21 | 4, 10, 5, 10, 20 | syl13anc 1368 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
22 | 17, 19, 21 | mpbi2and 976 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)(𝑋 ∧ 0 )) |
23 | 1, 2, 4, 13, 10, 15, 22 | latasymd 17104 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 lecple 15995 meetcmee 16992 0.cp0 17084 Latclat 17092 OPcops 34777 OLcol 34779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-preset 16975 df-poset 16993 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-lat 17093 df-oposet 34781 df-ol 34783 |
This theorem is referenced by: olm02 34842 omlfh1N 34863 |
Copyright terms: Public domain | W3C validator |