MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccatid Structured version   Visualization version   GIF version

Theorem oppccatid 16989
Description: Lemma for oppccat 16992. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppccatid (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))

Proof of Theorem oppccatid
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . 5 𝑂 = (oppCat‘𝐶)
2 eqid 2821 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 16988 . . . 4 (Base‘𝐶) = (Base‘𝑂)
43a1i 11 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) = (Base‘𝑂))
5 eqidd 2822 . . 3 (𝐶 ∈ Cat → (Hom ‘𝑂) = (Hom ‘𝑂))
6 eqidd 2822 . . 3 (𝐶 ∈ Cat → (comp‘𝑂) = (comp‘𝑂))
71fvexi 6684 . . . 4 𝑂 ∈ V
87a1i 11 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ V)
9 biid 263 . . 3 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))) ↔ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤))))
10 eqid 2821 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2821 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
12 simpl 485 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
13 simpr 487 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
142, 10, 11, 12, 13catidcl 16953 . . . 4 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
1510, 1oppchom 16985 . . . 4 (𝑦(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑦)
1614, 15eleqtrrdi 2924 . . 3 ((𝐶 ∈ Cat ∧ 𝑦 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝑂)𝑦))
17 eqid 2821 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
18 simpr1l 1226 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑥 ∈ (Base‘𝐶))
19 simpr1r 1227 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑦 ∈ (Base‘𝐶))
202, 17, 1, 18, 19, 19oppcco 16987 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)))
21 simpl 485 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝐶 ∈ Cat)
22 simpr31 1259 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
2310, 1oppchom 16985 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2422, 23eleqtrdi 2923 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
252, 10, 11, 21, 19, 17, 18, 24catrid 16955 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑦, 𝑦⟩(comp‘𝐶)𝑥)((Id‘𝐶)‘𝑦)) = 𝑓)
2620, 25eqtrd 2856 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑦)𝑓) = 𝑓)
27 simpr2l 1228 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑧 ∈ (Base‘𝐶))
282, 17, 1, 19, 19, 27oppcco 16987 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔))
29 simpr32 1260 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧))
3010, 1oppchom 16985 . . . . . 6 (𝑦(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑦)
3129, 30eleqtrdi 2923 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
322, 10, 11, 21, 27, 17, 19, 31catlid 16954 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((Id‘𝐶)‘𝑦)(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑦)𝑔) = 𝑔)
3328, 32eqtrd 2856 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑦, 𝑦⟩(comp‘𝑂)𝑧)((Id‘𝐶)‘𝑦)) = 𝑔)
342, 17, 1, 18, 19, 27oppcco 16987 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
352, 10, 17, 21, 27, 19, 18, 31, 24catcocl 16956 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) ∈ (𝑧(Hom ‘𝐶)𝑥))
3634, 35eqeltrd 2913 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑧(Hom ‘𝐶)𝑥))
3710, 1oppchom 16985 . . . 4 (𝑥(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑥)
3836, 37eleqtrrdi 2924 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑂)𝑧))
39 simpr2r 1229 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → 𝑤 ∈ (Base‘𝐶))
40 simpr33 1261 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
4110, 1oppchom 16985 . . . . . . 7 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
4240, 41eleqtrdi 2923 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ∈ (𝑤(Hom ‘𝐶)𝑧))
432, 10, 17, 21, 39, 27, 19, 42, 31, 18, 24catass 16957 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
442, 17, 1, 18, 27, 39oppcco 16987 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)) = ((𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑥)))
452, 17, 1, 18, 19, 39oppcco 16987 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = (𝑓(⟨𝑤, 𝑦⟩(comp‘𝐶)𝑥)(𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))))
4643, 44, 453eqtr4rd 2867 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
472, 17, 1, 19, 27, 39oppcco 16987 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔) = (𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦)))
4847oveq1d 7171 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((𝑔(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑦))(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓))
4934oveq2d 7172 . . . 4 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔)))
5046, 48, 493eqtr4d 2866 . . 3 ((𝐶 ∈ Cat ∧ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑂)𝑧) ∧ ∈ (𝑧(Hom ‘𝑂)𝑤)))) → (((⟨𝑦, 𝑧⟩(comp‘𝑂)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝑂)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
514, 5, 6, 8, 9, 16, 26, 33, 38, 50iscatd2 16952 . 2 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
522, 11cidfn 16950 . . . . 5 (𝐶 ∈ Cat → (Id‘𝐶) Fn (Base‘𝐶))
53 dffn5 6724 . . . . 5 ((Id‘𝐶) Fn (Base‘𝐶) ↔ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5452, 53sylib 220 . . . 4 (𝐶 ∈ Cat → (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))
5554eqeq2d 2832 . . 3 (𝐶 ∈ Cat → ((Id‘𝑂) = (Id‘𝐶) ↔ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦))))
5655anbi2d 630 . 2 (𝐶 ∈ Cat → ((𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)) ↔ (𝑂 ∈ Cat ∧ (Id‘𝑂) = (𝑦 ∈ (Base‘𝐶) ↦ ((Id‘𝐶)‘𝑦)))))
5751, 56mpbird 259 1 (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573  cmpt 5146   Fn wfn 6350  cfv 6355  (class class class)co 7156  Basecbs 16483  Hom chom 16576  compcco 16577  Catccat 16935  Idccid 16936  oppCatcoppc 16981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-oppc 16982
This theorem is referenced by:  oppcid  16991  oppccat  16992
  Copyright terms: Public domain W3C validator