Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrdich Structured version   Visualization version   GIF version

Theorem pell1234qrdich 37896
 Description: A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrdich ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))

Proof of Theorem pell1234qrdich
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 37886 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simp-4r 827 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
3 oveq1 6808 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑏)) = (𝑎 + ((√‘𝐷) · 𝑏)))
43eqeq2d 2758 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ↔ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))))
5 oveq1 6808 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
65oveq1d 6816 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
76eqeq1d 2750 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
84, 7anbi12d 749 . . . . . . . . . . . 12 (𝑐 = 𝑎 → ((𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
98rexbidv 3178 . . . . . . . . . . 11 (𝑐 = 𝑎 → (∃𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
109rspcev 3437 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
1110adantll 752 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
12 elpell14qr 37884 . . . . . . . . . 10 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
1312ad4antr 771 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
142, 11, 13mpbir2and 995 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ (Pell14QR‘𝐷))
1514orcd 406 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
1615exp31 631 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
17 simp-5r 831 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
1817renegcld 10620 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ ℝ)
19 simpllr 817 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑎 ∈ ℕ0)
20 znegcl 11575 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → -𝑏 ∈ ℤ)
2120ad2antlr 765 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
22 simprl 811 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
2322negeqd 10438 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = -(𝑎 + ((√‘𝐷) · 𝑏)))
24 zcn 11545 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2524ad4antlr 773 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
26 eldifi 3863 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2726nncnd 11199 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
2827ad5antr 775 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
2928sqrtcld 14346 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
30 zcn 11545 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3130ad2antlr 765 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
3229, 31mulcld 10223 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
3325, 32negdid 10568 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -(𝑎 + ((√‘𝐷) · 𝑏)) = (-𝑎 + -((√‘𝐷) · 𝑏)))
34 mulneg2 10630 . . . . . . . . . . . . . . . 16 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3534eqcomd 2754 . . . . . . . . . . . . . . 15 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3629, 31, 35syl2anc 696 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3736oveq2d 6817 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎 + -((√‘𝐷) · 𝑏)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
3823, 33, 373eqtrd 2786 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)))
39 sqneg 13088 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
4025, 39syl 17 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎↑2) = (𝑎↑2))
41 sqneg 13088 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4231, 41syl 17 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4342oveq2d 6817 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4440, 43oveq12d 6819 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
45 simprr 813 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
4644, 45eqtrd 2782 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
47 oveq1 6808 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · 𝑑)))
4847eqeq2d 2758 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑))))
49 oveq1 6808 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑎 → (𝑐↑2) = (-𝑎↑2))
5049oveq1d 6816 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (𝑑↑2))))
5150eqeq1d 2750 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5248, 51anbi12d 749 . . . . . . . . . . . . 13 (𝑐 = -𝑎 → ((-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
53 oveq2 6809 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5453oveq2d 6817 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → (-𝑎 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
5554eqeq2d 2758 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏))))
56 oveq1 6808 . . . . . . . . . . . . . . . . 17 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
5756oveq2d 6817 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
5857oveq2d 6817 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (-𝑏↑2))))
5958eqeq1d 2750 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6055, 59anbi12d 749 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → ((-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6152, 60rspc2ev 3451 . . . . . . . . . . . 12 ((-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℤ ∧ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
6219, 21, 38, 46, 61syl112anc 1467 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
63 elpell14qr 37884 . . . . . . . . . . . 12 (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6463ad5antr 775 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6518, 62, 64mpbir2and 995 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ (Pell14QR‘𝐷))
6665olcd 407 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
6766ex 449 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6867rexlimdva 3157 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6968ex 449 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
70 elznn0 11555 . . . . . . . 8 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
7170simprbi 483 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7271adantl 473 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7316, 69, 72mpjaod 395 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7473rexlimdva 3157 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7574expimpd 630 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
761, 75sylbid 230 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7776imp 444 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1620   ∈ wcel 2127  ∃wrex 3039   ∖ cdif 3700  ‘cfv 6037  (class class class)co 6801  ℂcc 10097  ℝcr 10098  1c1 10100   + caddc 10102   · cmul 10104   − cmin 10429  -cneg 10430  ℕcn 11183  2c2 11233  ℕ0cn0 11455  ℤcz 11540  ↑cexp 13025  √csqrt 14143  ◻NNcsquarenn 37871  Pell1234QRcpell1234qr 37873  Pell14QRcpell14qr 37874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-pell14qr 37878  df-pell1234qr 37879 This theorem is referenced by:  elpell14qr2  37897
 Copyright terms: Public domain W3C validator