Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrdich Structured version   Visualization version   GIF version

Theorem pell1234qrdich 39478
Description: A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrdich ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))

Proof of Theorem pell1234qrdich
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 39468 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simp-4r 782 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
3 oveq1 7163 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑏)) = (𝑎 + ((√‘𝐷) · 𝑏)))
43eqeq2d 2832 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ↔ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))))
5 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
65oveq1d 7171 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
76eqeq1d 2823 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
84, 7anbi12d 632 . . . . . . . . . . . 12 (𝑐 = 𝑎 → ((𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
98rexbidv 3297 . . . . . . . . . . 11 (𝑐 = 𝑎 → (∃𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
109rspcev 3623 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
1110adantll 712 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
12 elpell14qr 39466 . . . . . . . . . 10 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
1312ad4antr 730 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
142, 11, 13mpbir2and 711 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ (Pell14QR‘𝐷))
1514orcd 869 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
1615exp31 422 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
17 simp-5r 784 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
1817renegcld 11067 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ ℝ)
19 simpllr 774 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑎 ∈ ℕ0)
20 znegcl 12018 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → -𝑏 ∈ ℤ)
2120ad2antlr 725 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
22 simprl 769 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
2322negeqd 10880 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = -(𝑎 + ((√‘𝐷) · 𝑏)))
24 zcn 11987 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2524ad4antlr 731 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
26 eldifi 4103 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2726nncnd 11654 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
2827ad5antr 732 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
2928sqrtcld 14797 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
30 zcn 11987 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3130ad2antlr 725 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
3229, 31mulcld 10661 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
3325, 32negdid 11010 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -(𝑎 + ((√‘𝐷) · 𝑏)) = (-𝑎 + -((√‘𝐷) · 𝑏)))
34 mulneg2 11077 . . . . . . . . . . . . . . . 16 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3534eqcomd 2827 . . . . . . . . . . . . . . 15 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3629, 31, 35syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3736oveq2d 7172 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎 + -((√‘𝐷) · 𝑏)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
3823, 33, 373eqtrd 2860 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)))
39 sqneg 13483 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
4025, 39syl 17 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎↑2) = (𝑎↑2))
41 sqneg 13483 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4231, 41syl 17 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4342oveq2d 7172 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4440, 43oveq12d 7174 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
45 simprr 771 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
4644, 45eqtrd 2856 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
47 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · 𝑑)))
4847eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑))))
49 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑎 → (𝑐↑2) = (-𝑎↑2))
5049oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (𝑑↑2))))
5150eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5248, 51anbi12d 632 . . . . . . . . . . . . 13 (𝑐 = -𝑎 → ((-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
53 oveq2 7164 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5453oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → (-𝑎 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
5554eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏))))
56 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
5756oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
5857oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (-𝑏↑2))))
5958eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6055, 59anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → ((-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6152, 60rspc2ev 3635 . . . . . . . . . . . 12 ((-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℤ ∧ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
6219, 21, 38, 46, 61syl112anc 1370 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
63 elpell14qr 39466 . . . . . . . . . . . 12 (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6463ad5antr 732 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6518, 62, 64mpbir2and 711 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ (Pell14QR‘𝐷))
6665olcd 870 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
6766ex 415 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6867rexlimdva 3284 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6968ex 415 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
70 elznn0 11997 . . . . . . . 8 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
7170simprbi 499 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7271adantl 484 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7316, 69, 72mpjaod 856 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7473rexlimdva 3284 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7574expimpd 456 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
761, 75sylbid 242 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7776imp 409 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wrex 3139  cdif 3933  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  cn 11638  2c2 11693  0cn0 11898  cz 11982  cexp 13430  csqrt 14592  NNcsquarenn 39453  Pell1234QRcpell1234qr 39455  Pell14QRcpell14qr 39456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-pell14qr 39460  df-pell1234qr 39461
This theorem is referenced by:  elpell14qr2  39479
  Copyright terms: Public domain W3C validator