Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrdich Structured version   Visualization version   GIF version

Theorem pell1234qrdich 36891
Description: A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrdich ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))

Proof of Theorem pell1234qrdich
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 36881 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simp-4r 806 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
3 oveq1 6612 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑏)) = (𝑎 + ((√‘𝐷) · 𝑏)))
43eqeq2d 2636 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ↔ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))))
5 oveq1 6612 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
65oveq1d 6620 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
76eqeq1d 2628 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
84, 7anbi12d 746 . . . . . . . . . . . 12 (𝑐 = 𝑎 → ((𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
98rexbidv 3050 . . . . . . . . . . 11 (𝑐 = 𝑎 → (∃𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
109rspcev 3300 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
1110adantll 749 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
12 elpell14qr 36879 . . . . . . . . . 10 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
1312ad4antr 767 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
142, 11, 13mpbir2and 956 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ (Pell14QR‘𝐷))
1514orcd 407 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
1615exp31 629 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
17 simp-5r 808 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
1817renegcld 10402 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ ℝ)
19 simpllr 798 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑎 ∈ ℕ0)
20 znegcl 11357 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → -𝑏 ∈ ℤ)
2120ad2antlr 762 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
22 simprl 793 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
2322negeqd 10220 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = -(𝑎 + ((√‘𝐷) · 𝑏)))
24 zcn 11327 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2524ad4antlr 768 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
26 eldifi 3715 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2726nncnd 10981 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
2827ad5antr 769 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
2928sqrtcld 14105 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
30 zcn 11327 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3130ad2antlr 762 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
3229, 31mulcld 10005 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
3325, 32negdid 10350 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -(𝑎 + ((√‘𝐷) · 𝑏)) = (-𝑎 + -((√‘𝐷) · 𝑏)))
34 mulneg2 10412 . . . . . . . . . . . . . . . 16 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3534eqcomd 2632 . . . . . . . . . . . . . . 15 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3629, 31, 35syl2anc 692 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3736oveq2d 6621 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎 + -((√‘𝐷) · 𝑏)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
3823, 33, 373eqtrd 2664 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)))
39 sqneg 12860 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
4025, 39syl 17 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎↑2) = (𝑎↑2))
41 sqneg 12860 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4231, 41syl 17 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4342oveq2d 6621 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4440, 43oveq12d 6623 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
45 simprr 795 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
4644, 45eqtrd 2660 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
47 oveq1 6612 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · 𝑑)))
4847eqeq2d 2636 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑))))
49 oveq1 6612 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑎 → (𝑐↑2) = (-𝑎↑2))
5049oveq1d 6620 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (𝑑↑2))))
5150eqeq1d 2628 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5248, 51anbi12d 746 . . . . . . . . . . . . 13 (𝑐 = -𝑎 → ((-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
53 oveq2 6613 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5453oveq2d 6621 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → (-𝑎 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
5554eqeq2d 2636 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏))))
56 oveq1 6612 . . . . . . . . . . . . . . . . 17 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
5756oveq2d 6621 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
5857oveq2d 6621 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (-𝑏↑2))))
5958eqeq1d 2628 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6055, 59anbi12d 746 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → ((-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6152, 60rspc2ev 3313 . . . . . . . . . . . 12 ((-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℤ ∧ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
6219, 21, 38, 46, 61syl112anc 1327 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
63 elpell14qr 36879 . . . . . . . . . . . 12 (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6463ad5antr 769 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6518, 62, 64mpbir2and 956 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ (Pell14QR‘𝐷))
6665olcd 408 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
6766ex 450 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6867rexlimdva 3029 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6968ex 450 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
70 elznn0 11337 . . . . . . . 8 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
7170simprbi 480 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7271adantl 482 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7316, 69, 72mpjaod 396 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7473rexlimdva 3029 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7574expimpd 628 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
761, 75sylbid 230 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7776imp 445 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1992  wrex 2913  cdif 3557  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212  cn 10965  2c2 11015  0cn0 11237  cz 11322  cexp 12797  csqrt 13902  NNcsquarenn 36866  Pell1234QRcpell1234qr 36868  Pell14QRcpell14qr 36869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-pell14qr 36873  df-pell1234qr 36874
This theorem is referenced by:  elpell14qr2  36892
  Copyright terms: Public domain W3C validator