MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpdragALT Structured version   Visualization version   GIF version

Theorem perpdragALT 25600
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
perpdrag.1 (𝜑𝐴𝐷)
perpdrag.2 (𝜑𝐵𝐷)
perpdrag.3 (𝜑𝐶𝑃)
perpdrag.4 (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
Assertion
Ref Expression
perpdragALT (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))

Proof of Theorem perpdragALT
StepHypRef Expression
1 eqidd 2621 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐴)
2 simpr 477 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
3 eqidd 2621 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐶)
41, 2, 3s3eqd 13590 . . 3 ((𝜑𝐴 = 𝐵) → ⟨“𝐴𝐴𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩)
5 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
6 colperpex.d . . . . 5 = (dist‘𝐺)
7 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
8 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
9 eqid 2620 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
10 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
11 perpdrag.3 . . . . 5 (𝜑𝐶𝑃)
12 perpdrag.4 . . . . . . 7 (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
138, 10, 12perpln1 25586 . . . . . 6 (𝜑𝐷 ∈ ran 𝐿)
14 perpdrag.1 . . . . . 6 (𝜑𝐴𝐷)
155, 8, 7, 10, 13, 14tglnpt 25425 . . . . 5 (𝜑𝐴𝑃)
165, 6, 7, 8, 9, 10, 11, 15, 11ragtrivb 25578 . . . . 5 (𝜑 → ⟨“𝐶𝐴𝐴”⟩ ∈ (∟G‘𝐺))
175, 6, 7, 8, 9, 10, 11, 15, 15, 16ragcom 25574 . . . 4 (𝜑 → ⟨“𝐴𝐴𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 481 . . 3 ((𝜑𝐴 = 𝐵) → ⟨“𝐴𝐴𝐶”⟩ ∈ (∟G‘𝐺))
194, 18eqeltrrd 2700 . 2 ((𝜑𝐴 = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2010adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
2115adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑃)
22 perpdrag.2 . . . . 5 (𝜑𝐵𝐷)
235, 8, 7, 10, 13, 22tglnpt 25425 . . . 4 (𝜑𝐵𝑃)
2423adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑃)
2522adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝐷)
26 simpr 477 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
2713adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐷 ∈ ran 𝐿)
2814adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐷)
295, 7, 8, 20, 21, 24, 26, 26, 27, 28, 25tglinethru 25512 . . . 4 ((𝜑𝐴𝐵) → 𝐷 = (𝐴𝐿𝐵))
3025, 29eleqtrd 2701 . . 3 ((𝜑𝐴𝐵) → 𝐵 ∈ (𝐴𝐿𝐵))
3111adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐶𝑃)
3212adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
3329, 32eqbrtrrd 4668 . . 3 ((𝜑𝐴𝐵) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐶))
345, 6, 7, 8, 20, 21, 24, 30, 31, 33perprag 25599 . 2 ((𝜑𝐴𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
3519, 34pm2.61dane 2878 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  ran crn 5105  cfv 5876  (class class class)co 6635  ⟨“cs3 13568  Basecbs 15838  distcds 15931  TarskiGcstrkg 25310  Itvcitv 25316  LineGclng 25317  pInvGcmir 25528  ∟Gcrag 25569  ⟂Gcperpg 25571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-s2 13574  df-s3 13575  df-trkgc 25328  df-trkgb 25329  df-trkgcb 25330  df-trkg 25333  df-cgrg 25387  df-mir 25529  df-rag 25570  df-perpg 25572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator