MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt Structured version   Visualization version   GIF version

Theorem tglnpt 25489
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
tglnpt.g (𝜑𝐺 ∈ TarskiG)
tglnpt.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt (𝜑𝑋𝑃)

Proof of Theorem tglnpt
StepHypRef Expression
1 tglnpt.g . . 3 (𝜑𝐺 ∈ TarskiG)
2 tglng.p . . . 4 𝑃 = (Base‘𝐺)
3 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
52, 3, 4tglnunirn 25488 . . 3 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
61, 5syl 17 . 2 (𝜑 ran 𝐿𝑃)
7 tglnpt.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 elssuni 4499 . . . 4 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
97, 8syl 17 . . 3 (𝜑𝐴 ran 𝐿)
10 tglnpt.x . . 3 (𝜑𝑋𝐴)
119, 10sseldd 3637 . 2 (𝜑𝑋 ran 𝐿)
126, 11sseldd 3637 1 (𝜑𝑋𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wss 3607   cuni 4468  ran crn 5144  cfv 5926  Basecbs 15904  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-cnv 5151  df-dm 5153  df-rn 5154  df-iota 5889  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-trkg 25397
This theorem is referenced by:  mirln  25616  mirln2  25617  perpcom  25653  perpneq  25654  ragperp  25657  foot  25659  footne  25660  footeq  25661  hlperpnel  25662  perprag  25663  perpdragALT  25664  perpdrag  25665  colperpexlem3  25669  oppne3  25680  oppcom  25681  oppnid  25683  opphllem1  25684  opphllem2  25685  opphllem3  25686  opphllem4  25687  opphllem5  25688  opphllem6  25689  oppperpex  25690  opphl  25691  outpasch  25692  lnopp2hpgb  25700  hpgerlem  25702  colopp  25706  colhp  25707  lmieu  25721  lmimid  25731  lnperpex  25740  trgcopy  25741  trgcopyeulem  25742
  Copyright terms: Public domain W3C validator