![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version |
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
Ref | Expression |
---|---|
tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | 2, 3, 4 | tglnunirn 25488 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | elssuni 4499 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
11 | 9, 10 | sseldd 3637 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
12 | 6, 11 | sseldd 3637 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∪ cuni 4468 ran crn 5144 ‘cfv 5926 Basecbs 15904 TarskiGcstrkg 25374 Itvcitv 25380 LineGclng 25381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-cnv 5151 df-dm 5153 df-rn 5154 df-iota 5889 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-trkg 25397 |
This theorem is referenced by: mirln 25616 mirln2 25617 perpcom 25653 perpneq 25654 ragperp 25657 foot 25659 footne 25660 footeq 25661 hlperpnel 25662 perprag 25663 perpdragALT 25664 perpdrag 25665 colperpexlem3 25669 oppne3 25680 oppcom 25681 oppnid 25683 opphllem1 25684 opphllem2 25685 opphllem3 25686 opphllem4 25687 opphllem5 25688 opphllem6 25689 oppperpex 25690 opphl 25691 outpasch 25692 lnopp2hpgb 25700 hpgerlem 25702 colopp 25706 colhp 25707 lmieu 25721 lmimid 25731 lnperpex 25740 trgcopy 25741 trgcopyeulem 25742 |
Copyright terms: Public domain | W3C validator |