MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Visualization version   GIF version

Theorem prdsdsval2 16750
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval2.e 𝐸 = (dist‘𝑅)
prdsdsval2.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . 4 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2820 . . . . 5 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6481 . . . 4 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . 3 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
10 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
11 prdsdsval2.d . . 3 𝐷 = (dist‘𝑌)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 16744 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ))
13 nfcv 2976 . . . . . . . 8 𝑥(𝐹𝑦)
14 nfcv 2976 . . . . . . . . 9 𝑥dist
15 nffvmpt1 6674 . . . . . . . . 9 𝑥((𝑥𝐼𝑅)‘𝑦)
1614, 15nffv 6673 . . . . . . . 8 𝑥(dist‘((𝑥𝐼𝑅)‘𝑦))
17 nfcv 2976 . . . . . . . 8 𝑥(𝐺𝑦)
1813, 16, 17nfov 7179 . . . . . . 7 𝑥((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))
19 nfcv 2976 . . . . . . 7 𝑦((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))
20 2fveq3 6668 . . . . . . . 8 (𝑦 = 𝑥 → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘((𝑥𝐼𝑅)‘𝑥)))
21 fveq2 6663 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
22 fveq2 6663 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2320, 21, 22oveq123d 7170 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦)) = ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
2418, 19, 23cbvmpt 5160 . . . . . 6 (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
25 eqidd 2821 . . . . . . 7 (𝜑𝐼 = 𝐼)
266fvmpt2 6772 . . . . . . . . . . . 12 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
2726fveq2d 6667 . . . . . . . . . . 11 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = (dist‘𝑅))
28 prdsdsval2.e . . . . . . . . . . 11 𝐸 = (dist‘𝑅)
2927, 28syl6eqr 2873 . . . . . . . . . 10 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = 𝐸)
3029oveqd 7166 . . . . . . . . 9 ((𝑥𝐼𝑅𝑋) → ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
3130ralimiaa 3158 . . . . . . . 8 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
325, 31syl 17 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
33 mpteq12 5146 . . . . . . 7 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3425, 32, 33syl2anc 586 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3524, 34syl5eq 2867 . . . . 5 (𝜑 → (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3635rneqd 5801 . . . 4 (𝜑 → ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3736uneq1d 4131 . . 3 (𝜑 → (ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}))
3837supeq1d 8903 . 2 (𝜑 → sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
3912, 38eqtrd 2855 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  cun 3927  {csn 4560  cmpt 5139  ran crn 5549   Fn wfn 6343  cfv 6348  (class class class)co 7149  supcsup 8897  0cc0 10530  *cxr 10667   < clt 10668  Basecbs 16476  distcds 16567  Xscprds 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-plusg 16571  df-mulr 16572  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-hom 16582  df-cco 16583  df-prds 16714
This theorem is referenced by:  prdsdsval3  16751  ressprdsds  22974
  Copyright terms: Public domain W3C validator