MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   GIF version

Theorem ptrescn 22247
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1 𝑋 = 𝐽
ptrescn.2 𝐽 = (∏t𝐹)
ptrescn.3 𝐾 = (∏t‘(𝐹𝐵))
Assertion
Ref Expression
ptrescn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptrescn
Dummy variables 𝑢 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1189 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝐵𝐴)
2 ptrescn.2 . . . . . . . . . 10 𝐽 = (∏t𝐹)
32ptuni 22202 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1128 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
5 ptrescn.1 . . . . . . . 8 𝑋 = 𝐽
64, 5syl6eqr 2874 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
76eleq2d 2898 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ 𝑥𝑋))
87biimpar 480 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝑥X𝑘𝐴 (𝐹𝑘))
9 resixp 8497 . . . . 5 ((𝐵𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
101, 8, 9syl2anc 586 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
11 ixpeq2 8475 . . . . . . 7 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
12 fvres 6689 . . . . . . . 8 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1312unieqd 4852 . . . . . . 7 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3152 . . . . . 6 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
15 ssexg 5227 . . . . . . . . 9 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1615ancoms 461 . . . . . . . 8 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
17163adant2 1127 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐵 ∈ V)
18 fssres 6544 . . . . . . . 8 ((𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
19183adant1 1126 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
20 ptrescn.3 . . . . . . . 8 𝐾 = (∏t‘(𝐹𝐵))
2120ptuni 22202 . . . . . . 7 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2217, 19, 21syl2anc 586 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2314, 22syl5eqr 2870 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2423adantr 483 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2510, 24eleqtrd 2915 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
2625fmpttd 6879 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾)
27 fimacnv 6839 . . . . . . 7 ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
2826, 27syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
29 pttop 22190 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
302, 29eqeltrid 2917 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 ∈ Top)
31303adant3 1128 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ Top)
325topopn 21514 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝑋𝐽)
3428, 33eqeltrd 2913 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽)
35 elsni 4584 . . . . . . 7 (𝑣 ∈ { 𝐾} → 𝑣 = 𝐾)
3635imaeq2d 5929 . . . . . 6 (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾))
3736eleq1d 2897 . . . . 5 (𝑣 ∈ { 𝐾} → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽))
3834, 37syl5ibrcom 249 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
3938ralrimiv 3181 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
40 imaco 6104 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
41 cnvco 5756 . . . . . . . . . . 11 ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘)))
4225adantlr 713 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
43 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵)))
44 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑧 𝐾 ↦ (𝑧𝑘)) = (𝑧 𝐾 ↦ (𝑧𝑘)))
45 fveq1 6669 . . . . . . . . . . . . . 14 (𝑧 = (𝑥𝐵) → (𝑧𝑘) = ((𝑥𝐵)‘𝑘))
4642, 43, 44, 45fmptco 6891 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)))
47 fvres 6689 . . . . . . . . . . . . . . 15 (𝑘𝐵 → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4847ad2antrl 726 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4948mpteq2dv 5162 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)) = (𝑥𝑋 ↦ (𝑥𝑘)))
5046, 49eqtrd 2856 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5150cnveqd 5746 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5241, 51syl5eqr 2870 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5352imaeq1d 5928 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
5440, 53syl5eqr 2870 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
55 simpl1 1187 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐴𝑉)
56 simpl2 1188 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐹:𝐴⟶Top)
57 simpl3 1189 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐵𝐴)
58 simprl 769 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐵)
5957, 58sseldd 3968 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐴)
605, 2ptpjcn 22219 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
6155, 56, 59, 60syl3anc 1367 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
62 simprr 771 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑢 ∈ (𝐹𝑘))
63 cnima 21873 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑢 ∈ (𝐹𝑘)) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6461, 62, 63syl2anc 586 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6554, 64eqeltrd 2913 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽)
66 imaeq2 5925 . . . . . . . 8 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
6766eleq1d 2897 . . . . . . 7 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽))
6865, 67syl5ibrcom 249 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
6968rexlimdvva 3294 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7069alrimiv 1928 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
71 eqid 2821 . . . . . . 7 (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
7271rnmpo 7284 . . . . . 6 ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)}
7372raleqi 3413 . . . . 5 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
7412rexeqdv 3416 . . . . . . . 8 (𝑘𝐵 → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
75 eqeq1 2825 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ 𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7675rexbidv 3297 . . . . . . . 8 (𝑦 = 𝑣 → (∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7774, 76sylan9bbr 513 . . . . . . 7 ((𝑦 = 𝑣𝑘𝐵) → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7877rexbidva 3296 . . . . . 6 (𝑦 = 𝑣 → (∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7978ralab 3684 . . . . 5 (∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8073, 79bitri 277 . . . 4 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8170, 80sylibr 236 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
82 ralunb 4167 . . 3 (∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ (∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ∧ ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8339, 81, 82sylanbrc 585 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
845toptopon 21525 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8531, 84sylib 220 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝑋))
86 snex 5332 . . . 4 { 𝐾} ∈ V
87 fvex 6683 . . . . . . . 8 ((𝐹𝐵)‘𝑘) ∈ V
8887abrexex 7663 . . . . . . 7 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
8988rgenw 3150 . . . . . 6 𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
90 abrexex2g 7665 . . . . . 6 ((𝐵 ∈ V ∧ ∀𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9117, 89, 90sylancl 588 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9272, 91eqeltrid 2917 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V)
93 unexg 7472 . . . 4 (({ 𝐾} ∈ V ∧ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
9486, 92, 93sylancr 589 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
95 eqid 2821 . . . . 5 𝐾 = 𝐾
9620, 95, 71ptval2 22209 . . . 4 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
9717, 19, 96syl2anc 586 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
98 pttop 22190 . . . . . 6 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
9917, 19, 98syl2anc 586 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∏t‘(𝐹𝐵)) ∈ Top)
10020, 99eqeltrid 2917 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ Top)
10195toptopon 21525 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
102100, 101sylib 220 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ (TopOn‘ 𝐾))
10385, 94, 97, 102subbascn 21862 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 ∧ ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)))
10426, 83, 103mpbir2and 711 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  cun 3934  wss 3936  {csn 4567   cuni 4838  cmpt 5146  ccnv 5554  ran crn 5556  cres 5557  cima 5558  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  Xcixp 8461  ficfi 8874  topGenctg 16711  tcpt 16712  Topctop 21501  TopOnctopon 21518   Cn ccn 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-fin 8513  df-fi 8875  df-topgen 16717  df-pt 16718  df-top 21502  df-topon 21519  df-bases 21554  df-cn 21835
This theorem is referenced by:  ptunhmeo  22416  tmdgsum  22703
  Copyright terms: Public domain W3C validator