MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem3 Structured version   Visualization version   GIF version

Theorem pythagtriplem3 15570
Description: Lemma for pythagtrip 15586. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)

Proof of Theorem pythagtriplem3
StepHypRef Expression
1 oveq2 6698 . . . . . . 7 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2)))
21adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2)))
3 nnz 11437 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 zsqcl 12974 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
53, 4syl 17 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℤ)
653ad2ant2 1103 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℤ)
7 nnz 11437 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 zsqcl 12974 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
97, 8syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℤ)
1093ad2ant1 1102 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
11 gcdadd 15294 . . . . . . . . 9 (((𝐵↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))))
126, 10, 11syl2anc 694 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))))
13 gcdcom 15282 . . . . . . . . 9 (((𝐵↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2)))
146, 10, 13syl2anc 694 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2)))
1512, 14eqtr3d 2687 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2)))
1615adantr 480 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2)))
172, 16eqtr3d 2687 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd (𝐶↑2)) = ((𝐴↑2) gcd (𝐵↑2)))
18 simpl2 1085 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐵 ∈ ℕ)
19 simpl3 1086 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐶 ∈ ℕ)
20 sqgcd 15325 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2)))
2118, 19, 20syl2anc 694 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2)))
22 simpl1 1084 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐴 ∈ ℕ)
23 sqgcd 15325 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
2422, 18, 23syl2anc 694 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
2517, 21, 243eqtr4d 2695 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2))
26253adant3 1101 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2))
27 simp3l 1109 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1)
2827oveq1d 6705 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐴 gcd 𝐵)↑2) = (1↑2))
2926, 28eqtrd 2685 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = (1↑2))
3033ad2ant2 1103 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
31 nnz 11437 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
32313ad2ant3 1104 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3330, 32gcdcld 15277 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℕ0)
3433nn0red 11390 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℝ)
35343ad2ant1 1102 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) ∈ ℝ)
3633nn0ge0d 11392 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐵 gcd 𝐶))
37363ad2ant1 1102 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐵 gcd 𝐶))
38 1re 10077 . . . 4 1 ∈ ℝ
39 0le1 10589 . . . 4 0 ≤ 1
40 sq11 12976 . . . 4 ((((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4138, 39, 40mpanr12 721 . . 3 (((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4235, 37, 41syl2anc 694 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4329, 42mpbid 222 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  cn 11058  2c2 11108  cz 11415  cexp 12900  cdvds 15027   gcd cgcd 15263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264
This theorem is referenced by:  pythagtriplem4  15571
  Copyright terms: Public domain W3C validator