MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimim Structured version   Visualization version   GIF version

Theorem rlimim 14323
Description: Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimim (𝜑 → (𝑘𝐴 ↦ (ℑ‘𝐵)) ⇝𝑟 (ℑ‘𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimim
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimabs.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑉)
2 rlimabs.2 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
31, 2rlimmptrcl 14319 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4 rlimcl 14215 . . 3 ((𝑘𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
52, 4syl 17 . 2 (𝜑𝐶 ∈ ℂ)
6 imf 13834 . . . 4 ℑ:ℂ⟶ℝ
7 ax-resscn 9978 . . . 4 ℝ ⊆ ℂ
8 fss 6043 . . . 4 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
96, 7, 8mp2an 707 . . 3 ℑ:ℂ⟶ℂ
109a1i 11 . 2 (𝜑 → ℑ:ℂ⟶ℂ)
11 imcn2 14313 . . 3 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐶))) < 𝑥))
125, 11sylan 488 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐶))) < 𝑥))
133, 5, 2, 10, 12rlimcn1b 14301 1 (𝜑 → (𝑘𝐴 ↦ (ℑ‘𝐵)) ⇝𝑟 (ℑ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1988  wral 2909  wrex 2910  wss 3567   class class class wbr 4644  cmpt 4720  wf 5872  cfv 5876  (class class class)co 6635  cc 9919  cr 9920   < clt 10059  cmin 10251  +crp 11817  cim 13819  abscabs 13955  𝑟 crli 14197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-rlim 14201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator