![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpexp12i | Structured version Visualization version GIF version |
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
Ref | Expression |
---|---|
rpexp12i | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpexp1i 15627 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) | |
2 | 1 | 3adant3r 1193 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
3 | simp2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝐵 ∈ ℤ) | |
4 | simp1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝐴 ∈ ℤ) | |
5 | simp3l 1241 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0) | |
6 | zexpcl 13061 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴↑𝑀) ∈ ℤ) | |
7 | 4, 5, 6 | syl2anc 696 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝐴↑𝑀) ∈ ℤ) |
8 | simp3r 1242 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0) | |
9 | rpexp1i 15627 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (𝐴↑𝑀) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐵 gcd (𝐴↑𝑀)) = 1 → ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) | |
10 | 3, 7, 8, 9 | syl3anc 1473 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐵 gcd (𝐴↑𝑀)) = 1 → ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) |
11 | gcdcom 15429 | . . . . 5 ⊢ (((𝐴↑𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑𝑀) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑀))) | |
12 | 7, 3, 11 | syl2anc 696 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴↑𝑀) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑀))) |
13 | 12 | eqeq1d 2754 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd (𝐴↑𝑀)) = 1)) |
14 | zexpcl 13061 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) | |
15 | 3, 8, 14 | syl2anc 696 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝐵↑𝑁) ∈ ℤ) |
16 | gcdcom 15429 | . . . . 5 ⊢ (((𝐴↑𝑀) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd (𝐴↑𝑀))) | |
17 | 7, 15, 16 | syl2anc 696 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd (𝐴↑𝑀))) |
18 | 17 | eqeq1d 2754 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1 ↔ ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) |
19 | 10, 13, 18 | 3imtr4d 283 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
20 | 2, 19 | syld 47 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 (class class class)co 6805 1c1 10121 ℕ0cn0 11476 ℤcz 11561 ↑cexp 13046 gcd cgcd 15410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-rp 12018 df-fz 12512 df-fl 12779 df-mod 12855 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-dvds 15175 df-gcd 15411 df-prm 15580 |
This theorem is referenced by: ablfac1b 18661 jm2.20nn 38058 |
Copyright terms: Public domain | W3C validator |