Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   GIF version

Theorem sge0val 42697
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Distinct variable groups:   𝑤,𝐹,𝑦   𝑦,𝑋
Allowed substitution hints:   𝑉(𝑦,𝑤)   𝑋(𝑤)

Proof of Theorem sge0val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 42694 . . 3 Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
21a1i 11 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ))))
3 rneq 5806 . . . . 5 (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹)
43eleq2d 2898 . . . 4 (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
54adantl 484 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
6 dmeq 5772 . . . . . . . . . . . 12 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
76adantl 484 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹)
8 fdm 6522 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
98adantr 483 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋)
107, 9eqtrd 2856 . . . . . . . . . 10 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋)
1110pweqd 4558 . . . . . . . . 9 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋)
1211ineq1d 4188 . . . . . . . 8 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
1312mpteq1d 5155 . . . . . . 7 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
1413adantll 712 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
15 fveq1 6669 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
1615sumeq2sdv 15061 . . . . . . . 8 (𝑥 = 𝐹 → Σ𝑤𝑦 (𝑥𝑤) = Σ𝑤𝑦 (𝐹𝑤))
1716mpteq2dv 5162 . . . . . . 7 (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1817adantl 484 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1914, 18eqtrd 2856 . . . . 5 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2019rneqd 5808 . . . 4 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2120supeq1d 8910 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ))
225, 21ifbieq2d 4492 . 2 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
23 simpr 487 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞))
24 simpl 485 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝑋𝑉)
25 fex 6989 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑋𝑉) → 𝐹 ∈ V)
2623, 24, 25syl2anc 586 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V)
27 pnfxr 10695 . . . 4 +∞ ∈ ℝ*
2827a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → +∞ ∈ ℝ*)
29 xrltso 12535 . . . . 5 < Or ℝ*
3029supex 8927 . . . 4 sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V
3130a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V)
32 ifexg 4514 . . 3 ((+∞ ∈ ℝ* ∧ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
3328, 31, 32syl2anc 586 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
342, 22, 26, 33fvmptd 6775 1 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  ifcif 4467  𝒫 cpw 4539  cmpt 5146  dom cdm 5555  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  supcsup 8904  0cc0 10537  +∞cpnf 10672  *cxr 10674   < clt 10675  [,]cicc 12742  Σcsu 15042  Σ^csumge0 42693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-sum 15043  df-sumge0 42694
This theorem is referenced by:  sge0vald  42700
  Copyright terms: Public domain W3C validator