Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   GIF version

Theorem sge0val 39887
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Distinct variable groups:   𝑤,𝐹,𝑦   𝑦,𝑋
Allowed substitution hints:   𝑉(𝑦,𝑤)   𝑋(𝑤)

Proof of Theorem sge0val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 39884 . . 3 Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
21a1i 11 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ))))
3 rneq 5311 . . . . 5 (𝑥 = 𝐹 → ran 𝑥 = ran 𝐹)
43eleq2d 2684 . . . 4 (𝑥 = 𝐹 → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
54adantl 482 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (+∞ ∈ ran 𝑥 ↔ +∞ ∈ ran 𝐹))
6 dmeq 5284 . . . . . . . . . . . 12 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
76adantl 482 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = dom 𝐹)
8 fdm 6008 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
98adantr 481 . . . . . . . . . . 11 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝐹 = 𝑋)
107, 9eqtrd 2655 . . . . . . . . . 10 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → dom 𝑥 = 𝑋)
1110pweqd 4135 . . . . . . . . 9 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → 𝒫 dom 𝑥 = 𝒫 𝑋)
1211ineq1d 3791 . . . . . . . 8 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝒫 dom 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
1312mpteq1d 4698 . . . . . . 7 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
1413adantll 749 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)))
15 fveq1 6147 . . . . . . . . 9 (𝑥 = 𝐹 → (𝑥𝑤) = (𝐹𝑤))
1615sumeq2ad 39198 . . . . . . . 8 (𝑥 = 𝐹 → Σ𝑤𝑦 (𝑥𝑤) = Σ𝑤𝑦 (𝐹𝑤))
1716mpteq2dv 4705 . . . . . . 7 (𝑥 = 𝐹 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1817adantl 482 . . . . . 6 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
1914, 18eqtrd 2655 . . . . 5 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2019rneqd 5313 . . . 4 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)) = ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)))
2120supeq1d 8296 . . 3 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ))
225, 21ifbieq2d 4083 . 2 (((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) ∧ 𝑥 = 𝐹) → if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
23 simpr 477 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹:𝑋⟶(0[,]+∞))
24 simpl 473 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝑋𝑉)
25 fex 6444 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑋𝑉) → 𝐹 ∈ V)
2623, 24, 25syl2anc 692 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → 𝐹 ∈ V)
27 pnfxr 10036 . . . 4 +∞ ∈ ℝ*
2827a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → +∞ ∈ ℝ*)
29 xrltso 11918 . . . . 5 < Or ℝ*
3029supex 8313 . . . 4 sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V
3130a1i 11 . . 3 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V)
32 ifexg 4129 . . 3 ((+∞ ∈ ℝ* ∧ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < ) ∈ V) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
3328, 31, 32syl2anc 692 . 2 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )) ∈ V)
342, 22, 26, 33fvmptd 6245 1 ((𝑋𝑉𝐹:𝑋⟶(0[,]+∞)) → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤𝑦 (𝐹𝑤)), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cin 3554  ifcif 4058  𝒫 cpw 4130  cmpt 4673  dom cdm 5074  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  0cc0 9880  +∞cpnf 10015  *cxr 10017   < clt 10018  [,]cicc 12120  Σcsu 14350  Σ^csumge0 39883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-sum 14351  df-sumge0 39884
This theorem is referenced by:  sge0vald  39890
  Copyright terms: Public domain W3C validator