MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdco Structured version   Visualization version   GIF version

Theorem swrdco 14201
Description: Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
swrdco ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))

Proof of Theorem swrdco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6516 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1131 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 swrdvalfn 14015 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
433expb 1116 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
543adant3 1128 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
6 swrdrn 14016 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
763expb 1116 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
873adant3 1128 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
9 fnco 6467 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
102, 5, 8, 9syl3anc 1367 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
11 wrdco 14195 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
12113adant2 1127 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
13 simp2l 1195 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑀 ∈ (0...𝑁))
14 lenco 14196 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1514eqcomd 2829 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
1615oveq2d 7174 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
1716eleq2d 2900 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1817biimpd 231 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1918expcom 416 . . . . . 6 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2019com13 88 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2120adantl 484 . . . 4 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
22213imp21 1110 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
23 swrdvalfn 14015 . . 3 (((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2412, 13, 22, 23syl3anc 1367 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
25 3anass 1091 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ↔ (𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))))
2625biimpri 230 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
27263adant3 1128 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
28 swrdfv 14012 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
2928fveq2d 6676 . . . . 5 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3027, 29sylan 582 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
31 wrdfn 13879 . . . . . 6 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
32313ad2ant1 1129 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
33 elfzodifsumelfzo 13106 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
34333ad2ant2 1130 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
3534imp 409 . . . . 5 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 fvco2 6760 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3732, 35, 36syl2an2r 683 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3830, 37eqtr4d 2861 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
39 fvco2 6760 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
405, 39sylan 582 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
4114ancoms 461 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
4241eqcomd 2829 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
4342oveq2d 7174 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
4443eleq2d 2900 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4544biimpd 231 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4645ex 415 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4746com13 88 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4847adantl 484 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
49483imp21 1110 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
5012, 13, 493jca 1124 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
51 swrdfv 14012 . . . 4 ((((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5250, 51sylan 582 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5338, 40, 523eqtr4d 2868 . 2 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖))
5410, 24, 53eqfnfvd 6807 1 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3938  cop 4575  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  0cc0 10539   + caddc 10542  cmin 10872  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   substr csubstr 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-substr 14005
This theorem is referenced by:  pfxco  14202
  Copyright terms: Public domain W3C validator