MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdfn Structured version   Visualization version   GIF version

Theorem wrdfn 13258
Description: A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
Assertion
Ref Expression
wrdfn (𝑊 ∈ Word 𝑆𝑊 Fn (0..^(#‘𝑊)))

Proof of Theorem wrdfn
StepHypRef Expression
1 wrdf 13249 . 2 (𝑊 ∈ Word 𝑆𝑊:(0..^(#‘𝑊))⟶𝑆)
2 ffn 6002 . 2 (𝑊:(0..^(#‘𝑊))⟶𝑆𝑊 Fn (0..^(#‘𝑊)))
31, 2syl 17 1 (𝑊 ∈ Word 𝑆𝑊 Fn (0..^(#‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  ..^cfzo 12406  #chash 13057  Word cword 13230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238
This theorem is referenced by:  wrdlndm  13260  iswrdsymb  13261  wrdfin  13262  eqwrd  13285  ccatlid  13308  ccatrid  13309  swrd0len  13360  swrdid  13366  revrev  13453  cshimadifsn  13512  revco  13517  cshco  13519  swrdco  13520  s3fn  13592  wrd2pr2op  13621  wrd3tpop  13625  wlkres  26436  wlkp1lem2  26440  wwlksm1edg  26636  sseqfv1  30229  sseqfn  30230  sseqfres  30233  sseqfv2  30234  signstres  30429  pfxccat1  40706
  Copyright terms: Public domain W3C validator