MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphip Structured version   Visualization version   GIF version

Theorem tcphip 23823
Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphip.s · = (·𝑖𝑊)
Assertion
Ref Expression
tcphip · = (·𝑖𝐺)

Proof of Theorem tcphip
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2820 . . 3 (Base‘𝑊) = (Base‘𝑊)
21tcphex 23815 . 2 (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥 · 𝑥))) ∈ V
3 tcphval.n . . . 4 𝐺 = (toℂPreHil‘𝑊)
4 tcphip.s . . . 4 · = (·𝑖𝑊)
53, 1, 4tcphval 23816 . . 3 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥 · 𝑥))))
65, 4tngip 23251 . 2 ((𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥 · 𝑥))) ∈ V → · = (·𝑖𝐺))
72, 6ax-mp 5 1 · = (·𝑖𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2113  Vcvv 3491  cmpt 5139  cfv 6348  (class class class)co 7149  csqrt 14587  Basecbs 16478  ·𝑖cip 16565  toℂPreHilctcph 23766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-seq 13367  df-exp 13427  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ndx 16481  df-slot 16482  df-sets 16485  df-ip 16578  df-tset 16579  df-ds 16582  df-tng 23189  df-tcph 23768
This theorem is referenced by:  tcphphl  23825  tcphcph  23835  rrxip  23988  rrxnm  23989
  Copyright terms: Public domain W3C validator