Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v0e Structured version   Visualization version   GIF version

Theorem usgr1v0e 26106
 Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr1v0e ((𝐺 ∈ USGraph ∧ (#‘𝑉) = 1) → (#‘𝐸) = 0)

Proof of Theorem usgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph )
2 vex 3189 . . . . . . . . 9 𝑣 ∈ V
32a1i 11 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝑣 ∈ V)
4 fusgredgfi.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54eqeq1i 2626 . . . . . . . . . 10 (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣})
65biimpi 206 . . . . . . . . 9 (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣})
76adantl 482 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣})
8 usgr1vr 26040 . . . . . . . . 9 ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
983adant1 1077 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
101, 3, 7, 9syl3anc 1323 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
111, 10mpd 15 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅)
12 fusgredgfi.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1312eqeq1i 2626 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
14 usgruhgr 25971 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph )
15 uhgriedg0edg0 25917 . . . . . . . . 9 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1614, 15syl 17 . . . . . . . 8 (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1716adantr 481 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1813, 17syl5bb 272 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
1911, 18mpbird 247 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅)
2019ex 450 . . . 4 (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅))
2120exlimdv 1858 . . 3 (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅))
22 fvex 6158 . . . . 5 (Vtx‘𝐺) ∈ V
234, 22eqeltri 2694 . . . 4 𝑉 ∈ V
24 hash1snb 13147 . . . 4 (𝑉 ∈ V → ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2523, 24mp1i 13 . . 3 (𝐺 ∈ USGraph → ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
26 fvex 6158 . . . . 5 (Edg‘𝐺) ∈ V
2712, 26eqeltri 2694 . . . 4 𝐸 ∈ V
28 hasheq0 13094 . . . 4 (𝐸 ∈ V → ((#‘𝐸) = 0 ↔ 𝐸 = ∅))
2927, 28mp1i 13 . . 3 (𝐺 ∈ USGraph → ((#‘𝐸) = 0 ↔ 𝐸 = ∅))
3021, 25, 293imtr4d 283 . 2 (𝐺 ∈ USGraph → ((#‘𝑉) = 1 → (#‘𝐸) = 0))
3130imp 445 1 ((𝐺 ∈ USGraph ∧ (#‘𝑉) = 1) → (#‘𝐸) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  Vcvv 3186  ∅c0 3891  {csn 4148  ‘cfv 5847  0cc0 9880  1c1 9881  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  Edgcedg 25839   UHGraph cuhgr 25847   USGraph cusgr 25937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-edg 25840  df-uhgr 25849  df-upgr 25873  df-uspgr 25938  df-usgr 25939 This theorem is referenced by:  cusgrsizeindb1  26233
 Copyright terms: Public domain W3C validator