Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr1e Structured version   Visualization version   GIF version

Theorem uspgr1e 26063
 Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
uspgr1e.v 𝑉 = (Vtx‘𝐺)
uspgr1e.a (𝜑𝐴𝑋)
uspgr1e.b (𝜑𝐵𝑉)
uspgr1e.c (𝜑𝐶𝑉)
uspgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
uspgr1e (𝜑𝐺 ∈ USPGraph )

Proof of Theorem uspgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 4880 . . . . . . 7 {𝐵, 𝐶} ∈ V
32snid 4186 . . . . . 6 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
4 f1sng 6145 . . . . . 6 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
51, 3, 4sylancl 693 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}})
6 uspgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 uspgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4329 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 uspgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9syl6sseq 3636 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4142 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 224 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 25936 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
14 f1ss 6073 . . . . 5 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
155, 13, 14syl2anc 692 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
162a1i 11 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ∈ V)
1716, 6upgr1elem 25936 . . . . . 6 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
18 f1ss 6073 . . . . . 6 (({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{{𝐵, 𝐶}} ∧ {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
195, 17, 18syl2anc 692 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
20 f1dm 6072 . . . . 5 ({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (V ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
21 f1eq2 6064 . . . . 5 (dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴} → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2219, 20, 213syl 18 . . . 4 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2315, 22mpbird 247 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
24 uspgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
2524dmeqd 5296 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
26 eqidd 2622 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
2724, 25, 26f1eq123d 6098 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2823, 27mpbird 247 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
2991vgrex 25816 . . 3 (𝐵𝑉𝐺 ∈ V)
30 eqid 2621 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
31 eqid 2621 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3230, 31isuspgr 25974 . . 3 (𝐺 ∈ V → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
336, 29, 323syl 18 . 2 (𝜑 → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
3428, 33mpbird 247 1 (𝜑𝐺 ∈ USPGraph )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  {crab 2912  Vcvv 3190   ∖ cdif 3557   ⊆ wss 3560  ∅c0 3897  𝒫 cpw 4136  {csn 4155  {cpr 4157  ⟨cop 4161   class class class wbr 4623  dom cdm 5084  –1-1→wf1 5854  ‘cfv 5857   ≤ cle 10035  2c2 11030  #chash 13073  Vtxcvtx 25808  iEdgciedg 25809   USPGraph cuspgr 25970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074  df-uspgr 25972 This theorem is referenced by:  usgr1e  26064  uspgr1eop  26066  1loopgruspgr  26316
 Copyright terms: Public domain W3C validator