MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 28146
Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkl0 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 27556 . . . . . . . 8 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
2 wlkop 27409 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
31, 2syl 17 . . . . . . 7 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4 fvex 6683 . . . . . . . . . . . . . . 15 (1st𝑤) ∈ V
5 hasheq0 13725 . . . . . . . . . . . . . . 15 ((1st𝑤) ∈ V → ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅)
76biimpi 218 . . . . . . . . . . . . 13 ((♯‘(1st𝑤)) = 0 → (1st𝑤) = ∅)
87adantr 483 . . . . . . . . . . . 12 (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (1st𝑤) = ∅)
983ad2ant3 1131 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
108adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
1110breq1d 5076 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ∅(ClWalks‘𝐺)(2nd𝑤)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
13121vgrex 26787 . . . . . . . . . . . . . . . . . 18 (𝑋𝑉𝐺 ∈ V)
14120clwlk 27909 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋𝑉 → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1615adantr 483 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1711, 16bitrd 281 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
18 fz0sn 13008 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6506 . . . . . . . . . . . . . . . 16 ((2nd𝑤):(0...0)⟶𝑉 ↔ (2nd𝑤):{0}⟶𝑉)
20 c0ex 10635 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 6898 . . . . . . . . . . . . . . . . 17 ((2nd𝑤):{0}⟶𝑉 ↔ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}))
22 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})
23 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤)‘0) = 𝑋)
2423adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ((2nd𝑤)‘0) = 𝑋)
2524opeq2d 4810 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ⟨0, ((2nd𝑤)‘0)⟩ = ⟨0, 𝑋⟩)
2625sneqd 4579 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → {⟨0, ((2nd𝑤)‘0)⟩} = {⟨0, 𝑋⟩})
2722, 26eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, 𝑋⟩})
2827ex 415 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}) → (2nd𝑤) = {⟨0, 𝑋⟩}))
2921, 28syl5bi 244 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):{0}⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3019, 29syl5bi 244 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):(0...0)⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3117, 30sylbid 242 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩}))
3231ex 415 . . . . . . . . . . . . 13 (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩})))
3332com23 86 . . . . . . . . . . . 12 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (2nd𝑤) = {⟨0, 𝑋⟩})))
34333imp 1107 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (2nd𝑤) = {⟨0, 𝑋⟩})
359, 34opeq12d 4811 . . . . . . . . . 10 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)
36353exp 1115 . . . . . . . . 9 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
37 eleq1 2900 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺)))
38 df-br 5067 . . . . . . . . . . 11 ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺))
3937, 38syl6bbr 291 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤)))
40 eqeq1 2825 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ ↔ ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))
4140imbi2d 343 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩) ↔ (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4239, 41imbi12d 347 . . . . . . . . 9 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)) ↔ ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4336, 42syl5ibr 248 . . . . . . . 8 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4443com23 86 . . . . . . 7 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4645com12 32 . . . . 5 (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4746impd 413 . . . 4 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
48 eqidd 2822 . . . . . . 7 (𝑋𝑉 → ∅ = ∅)
4920a1i 11 . . . . . . . 8 (𝑋𝑉 → 0 ∈ V)
50 snidg 4599 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
5149, 50fsnd 6657 . . . . . . 7 (𝑋𝑉 → {⟨0, 𝑋⟩}:{0}⟶{𝑋})
52120clwlkv 27910 . . . . . . 7 ((𝑋𝑉 ∧ ∅ = ∅ ∧ {⟨0, 𝑋⟩}:{0}⟶{𝑋}) → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
5348, 51, 52mpd3an23 1459 . . . . . 6 (𝑋𝑉 → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
54 hash0 13729 . . . . . . 7 (♯‘∅) = 0
5554a1i 11 . . . . . 6 (𝑋𝑉 → (♯‘∅) = 0)
56 fvsng 6942 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝑉) → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5720, 56mpan 688 . . . . . 6 (𝑋𝑉 → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5853, 55, 57jca32 518 . . . . 5 (𝑋𝑉 → (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
59 eleq1 2900 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺)))
60 df-br 5067 . . . . . . 7 (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺))
6159, 60syl6bbr 291 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ∅(ClWalks‘𝐺){⟨0, 𝑋⟩}))
62 0ex 5211 . . . . . . . . 9 ∅ ∈ V
63 snex 5332 . . . . . . . . 9 {⟨0, 𝑋⟩} ∈ V
6462, 63op1std 7699 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (1st𝑤) = ∅)
6564fveqeq2d 6678 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((♯‘(1st𝑤)) = 0 ↔ (♯‘∅) = 0))
6662, 63op2ndd 7700 . . . . . . . . 9 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (2nd𝑤) = {⟨0, 𝑋⟩})
6766fveq1d 6672 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((2nd𝑤)‘0) = ({⟨0, 𝑋⟩}‘0))
6867eqeq1d 2823 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((2nd𝑤)‘0) = 𝑋 ↔ ({⟨0, 𝑋⟩}‘0) = 𝑋))
6965, 68anbi12d 632 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
7061, 69anbi12d 632 . . . . 5 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋))))
7158, 70syl5ibrcom 249 . . . 4 (𝑋𝑉 → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋))))
7247, 71impbid 214 . . 3 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7372alrimiv 1928 . 2 (𝑋𝑉 → ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
74 rabeqsn 4606 . 2 ({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩} ↔ ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7573, 74sylibr 236 1 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  c0 4291  {csn 4567  cop 4573   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  0cc0 10537  ...cfz 12893  chash 13691  Vtxcvtx 26781  Walkscwlks 27378  ClWalkscclwlks 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-wlks 27381  df-clwlks 27552
This theorem is referenced by:  numclwlk1lem1  28148
  Copyright terms: Public domain W3C validator