ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun Unicode version

Theorem 0iun 3834
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun  |-  U_ x  e.  (/)  A  =  (/)

Proof of Theorem 0iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rex0 3344 . . . 4  |-  -.  E. x  e.  (/)  y  e.  A
2 eliun 3781 . . . 4  |-  ( y  e.  U_ x  e.  (/)  A  <->  E. x  e.  (/)  y  e.  A )
31, 2mtbir 643 . . 3  |-  -.  y  e.  U_ x  e.  (/)  A
4 noel 3331 . . 3  |-  -.  y  e.  (/)
53, 42false 673 . 2  |-  ( y  e.  U_ x  e.  (/)  A  <->  y  e.  (/) )
65eqriv 2110 1  |-  U_ x  e.  (/)  A  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1312    e. wcel 1461   E.wrex 2389   (/)c0 3327   U_ciun 3777
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-dif 3037  df-nul 3328  df-iun 3779
This theorem is referenced by:  iununir  3860  rdg0  6236  iunfidisj  6784  fsum2d  11090  fsumiun  11132  iuncld  12121
  Copyright terms: Public domain W3C validator