Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0iun | Unicode version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 3432 | . . . 4 | |
2 | eliun 3877 | . . . 4 | |
3 | 1, 2 | mtbir 666 | . . 3 |
4 | noel 3418 | . . 3 | |
5 | 3, 4 | 2false 696 | . 2 |
6 | 5 | eqriv 2167 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 wrex 2449 c0 3414 ciun 3873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-nul 3415 df-iun 3875 |
This theorem is referenced by: iununir 3956 rdg0 6366 iunfidisj 6923 fsum2d 11398 fsumiun 11440 fprod2d 11586 iuncld 12909 |
Copyright terms: Public domain | W3C validator |