ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun Unicode version

Theorem 0iun 4023
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun  |-  U_ x  e.  (/)  A  =  (/)

Proof of Theorem 0iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rex0 3509 . . . 4  |-  -.  E. x  e.  (/)  y  e.  A
2 eliun 3969 . . . 4  |-  ( y  e.  U_ x  e.  (/)  A  <->  E. x  e.  (/)  y  e.  A )
31, 2mtbir 675 . . 3  |-  -.  y  e.  U_ x  e.  (/)  A
4 noel 3495 . . 3  |-  -.  y  e.  (/)
53, 42false 706 . 2  |-  ( y  e.  U_ x  e.  (/)  A  <->  y  e.  (/) )
65eqriv 2226 1  |-  U_ x  e.  (/)  A  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   E.wrex 2509   (/)c0 3491   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-nul 3492  df-iun 3967
This theorem is referenced by:  iununir  4049  rdg0  6533  iunfidisj  7113  fsum2d  11946  fsumiun  11988  fprod2d  12134  iuncld  14789
  Copyright terms: Public domain W3C validator