ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnf0xnn0 Unicode version

Theorem pnf0xnn0 9400
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0  |- +oo  e. NN0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2207 . . 3  |- +oo  = +oo
21olci 734 . 2  |-  ( +oo  e.  NN0  \/ +oo  = +oo )
3 elxnn0 9395 . 2  |-  ( +oo  e. NN0*  <-> 
( +oo  e.  NN0  \/ +oo  = +oo )
)
42, 3mpbir 146 1  |- +oo  e. NN0*
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2178   +oocpnf 8139   NN0cn0 9330  NN0*cxnn0 9393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-un 4498  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-pnf 8144  df-xr 8146  df-xnn0 9394
This theorem is referenced by:  inftonninf  10624  nninfctlemfo  12476  pcxnn0cl  12748
  Copyright terms: Public domain W3C validator