ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnf0xnn0 Unicode version

Theorem pnf0xnn0 9365
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0  |- +oo  e. NN0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2205 . . 3  |- +oo  = +oo
21olci 734 . 2  |-  ( +oo  e.  NN0  \/ +oo  = +oo )
3 elxnn0 9360 . 2  |-  ( +oo  e. NN0*  <-> 
( +oo  e.  NN0  \/ +oo  = +oo )
)
42, 3mpbir 146 1  |- +oo  e. NN0*
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2176   +oocpnf 8104   NN0cn0 9295  NN0*cxnn0 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-un 4480  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-pnf 8109  df-xr 8111  df-xnn0 9359
This theorem is referenced by:  inftonninf  10587  nninfctlemfo  12361  pcxnn0cl  12633
  Copyright terms: Public domain W3C validator