Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . 2 | |
2 | elnn0 9151 | . . . 4 | |
3 | 2 | biimpri 133 | . . 3 |
4 | 3 | olcs 736 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 708 wceq 1353 wcel 2146 cc0 7786 cn 8892 cn0 9149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-i2m1 7891 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-n0 9150 |
This theorem is referenced by: 0xnn0 9218 elnn0z 9239 nn0ind-raph 9343 10nn0 9374 declei 9392 numlti 9393 nummul1c 9405 decaddc2 9412 decrmanc 9413 decrmac 9414 decaddm10 9415 decaddi 9416 decaddci 9417 decaddci2 9418 decmul1 9420 decmulnc 9423 6p5e11 9429 7p4e11 9432 8p3e11 9437 9p2e11 9443 10p10e20 9451 fz01or 10081 0elfz 10088 4fvwrd4 10110 fvinim0ffz 10211 0tonninf 10409 exple1 10546 sq10 10660 bc0k 10704 bcn1 10706 bccl 10715 fihasheq0 10741 fsumnn0cl 11379 binom 11460 bcxmas 11465 isumnn0nn 11469 geoserap 11483 ef0lem 11636 ege2le3 11647 ef4p 11670 efgt1p2 11671 efgt1p 11672 nn0o 11879 ndvdssub 11902 gcdval 11927 gcdcl 11934 dfgcd3 11978 nn0seqcvgd 12008 algcvg 12015 eucalg 12026 lcmcl 12039 pw2dvdslemn 12132 pclem0 12253 pcpre1 12259 pcfac 12315 ennnfonelemj0 12369 ennnfonelem0 12373 ennnfonelem1 12375 slotsdifdsndx 12609 dveflem 13758 pilem3 13775 1kp2ke3k 14036 ex-fac 14040 012of 14305 isomninnlem 14339 iswomninnlem 14358 iswomni0 14360 ismkvnnlem 14361 |
Copyright terms: Public domain | W3C validator |