Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | elnn0 9137 | . . . 4 | |
3 | 2 | biimpri 132 | . . 3 |
4 | 3 | olcs 731 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 703 wceq 1348 wcel 2141 cc0 7774 cn 8878 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-i2m1 7879 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-n0 9136 |
This theorem is referenced by: 0xnn0 9204 elnn0z 9225 nn0ind-raph 9329 10nn0 9360 declei 9378 numlti 9379 nummul1c 9391 decaddc2 9398 decrmanc 9399 decrmac 9400 decaddm10 9401 decaddi 9402 decaddci 9403 decaddci2 9404 decmul1 9406 decmulnc 9409 6p5e11 9415 7p4e11 9418 8p3e11 9423 9p2e11 9429 10p10e20 9437 fz01or 10067 0elfz 10074 4fvwrd4 10096 fvinim0ffz 10197 0tonninf 10395 exple1 10532 sq10 10646 bc0k 10690 bcn1 10692 bccl 10701 fihasheq0 10728 fsumnn0cl 11366 binom 11447 bcxmas 11452 isumnn0nn 11456 geoserap 11470 ef0lem 11623 ege2le3 11634 ef4p 11657 efgt1p2 11658 efgt1p 11659 nn0o 11866 ndvdssub 11889 gcdval 11914 gcdcl 11921 dfgcd3 11965 nn0seqcvgd 11995 algcvg 12002 eucalg 12013 lcmcl 12026 pw2dvdslemn 12119 pclem0 12240 pcpre1 12246 pcfac 12302 ennnfonelemj0 12356 ennnfonelem0 12360 ennnfonelem1 12362 dveflem 13481 pilem3 13498 1kp2ke3k 13759 ex-fac 13763 012of 14028 isomninnlem 14062 iswomninnlem 14081 iswomni0 14083 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |