| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | elnn0 9371 |
. . . 4
| |
| 3 | 2 | biimpri 133 |
. . 3
|
| 4 | 3 | olcs 741 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-i2m1 8104 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-n0 9370 |
| This theorem is referenced by: 0xnn0 9438 elnn0z 9459 nn0ind-raph 9564 10nn0 9595 declei 9613 numlti 9614 nummul1c 9626 decaddc2 9633 decrmanc 9634 decrmac 9635 decaddm10 9636 decaddi 9637 decaddci 9638 decaddci2 9639 decmul1 9641 decmulnc 9644 6p5e11 9650 7p4e11 9653 8p3e11 9658 9p2e11 9664 10p10e20 9672 fz01or 10307 0elfz 10314 4fvwrd4 10336 fvinim0ffz 10447 0tonninf 10662 exple1 10817 sq10 10934 bc0k 10978 bcn1 10980 bccl 10989 fihasheq0 11015 iswrdiz 11078 iswrddm0 11095 s1leng 11157 s1fv 11159 eqs1 11161 s111 11164 pfx00g 11207 s2fv0g 11319 s3fv0g 11323 fsumnn0cl 11914 binom 11995 bcxmas 12000 isumnn0nn 12004 geoserap 12018 ef0lem 12171 ege2le3 12182 ef4p 12205 efgt1p2 12206 efgt1p 12207 nn0o 12418 ndvdssub 12441 5ndvds3 12445 bits0 12459 0bits 12470 gcdval 12480 gcdcl 12487 dfgcd3 12531 nn0seqcvgd 12563 algcvg 12570 eucalg 12581 lcmcl 12594 pw2dvdslemn 12687 pclem0 12809 pcpre1 12815 pcfac 12873 dec5dvds2 12936 2exp11 12959 2exp16 12960 ennnfonelemj0 12972 ennnfonelem0 12976 ennnfonelem1 12978 plendxnocndx 13247 slotsdifdsndx 13258 slotsdifunifndx 13265 imasvalstrd 13303 cnfldstr 14522 nn0subm 14547 znf1o 14615 fczpsrbag 14635 psr1clfi 14652 mplsubgfilemm 14662 dveflem 15400 plyconst 15419 plycolemc 15432 pilem3 15457 1kp2ke3k 16088 ex-fac 16092 012of 16357 isomninnlem 16398 iswomninnlem 16417 iswomni0 16419 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |