| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. 2
| |
| 2 | elnn0 9299 |
. . . 4
| |
| 3 | 2 | biimpri 133 |
. . 3
|
| 4 | 3 | olcs 738 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-mulcl 8025 ax-i2m1 8032 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-n0 9298 |
| This theorem is referenced by: 0xnn0 9366 elnn0z 9387 nn0ind-raph 9492 10nn0 9523 declei 9541 numlti 9542 nummul1c 9554 decaddc2 9561 decrmanc 9562 decrmac 9563 decaddm10 9564 decaddi 9565 decaddci 9566 decaddci2 9567 decmul1 9569 decmulnc 9572 6p5e11 9578 7p4e11 9581 8p3e11 9586 9p2e11 9592 10p10e20 9600 fz01or 10235 0elfz 10242 4fvwrd4 10264 fvinim0ffz 10372 0tonninf 10587 exple1 10742 sq10 10859 bc0k 10903 bcn1 10905 bccl 10914 fihasheq0 10940 iswrdiz 11003 iswrddm0 11020 s1leng 11081 s1fv 11083 eqs1 11085 s111 11088 pfx00g 11131 fsumnn0cl 11747 binom 11828 bcxmas 11833 isumnn0nn 11837 geoserap 11851 ef0lem 12004 ege2le3 12015 ef4p 12038 efgt1p2 12039 efgt1p 12040 nn0o 12251 ndvdssub 12274 5ndvds3 12278 bits0 12292 0bits 12303 gcdval 12313 gcdcl 12320 dfgcd3 12364 nn0seqcvgd 12396 algcvg 12403 eucalg 12414 lcmcl 12427 pw2dvdslemn 12520 pclem0 12642 pcpre1 12648 pcfac 12706 dec5dvds2 12769 2exp11 12792 2exp16 12793 ennnfonelemj0 12805 ennnfonelem0 12809 ennnfonelem1 12811 plendxnocndx 13079 slotsdifdsndx 13090 slotsdifunifndx 13097 imasvalstrd 13135 cnfldstr 14353 nn0subm 14378 znf1o 14446 fczpsrbag 14466 psr1clfi 14483 mplsubgfilemm 14493 dveflem 15231 plyconst 15250 plycolemc 15263 pilem3 15288 1kp2ke3k 15697 ex-fac 15701 012of 15967 isomninnlem 16006 iswomninnlem 16025 iswomni0 16027 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |