| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. 2
| |
| 2 | elnn0 9297 |
. . . 4
| |
| 3 | 2 | biimpri 133 |
. . 3
|
| 4 | 3 | olcs 738 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-n0 9296 |
| This theorem is referenced by: 0xnn0 9364 elnn0z 9385 nn0ind-raph 9490 10nn0 9521 declei 9539 numlti 9540 nummul1c 9552 decaddc2 9559 decrmanc 9560 decrmac 9561 decaddm10 9562 decaddi 9563 decaddci 9564 decaddci2 9565 decmul1 9567 decmulnc 9570 6p5e11 9576 7p4e11 9579 8p3e11 9584 9p2e11 9590 10p10e20 9598 fz01or 10233 0elfz 10240 4fvwrd4 10262 fvinim0ffz 10370 0tonninf 10585 exple1 10740 sq10 10857 bc0k 10901 bcn1 10903 bccl 10912 fihasheq0 10938 iswrdiz 11001 iswrddm0 11018 s1leng 11078 s1fv 11080 eqs1 11082 s111 11085 fsumnn0cl 11714 binom 11795 bcxmas 11800 isumnn0nn 11804 geoserap 11818 ef0lem 11971 ege2le3 11982 ef4p 12005 efgt1p2 12006 efgt1p 12007 nn0o 12218 ndvdssub 12241 5ndvds3 12245 bits0 12259 0bits 12270 gcdval 12280 gcdcl 12287 dfgcd3 12331 nn0seqcvgd 12363 algcvg 12370 eucalg 12381 lcmcl 12394 pw2dvdslemn 12487 pclem0 12609 pcpre1 12615 pcfac 12673 dec5dvds2 12736 2exp11 12759 2exp16 12760 ennnfonelemj0 12772 ennnfonelem0 12776 ennnfonelem1 12778 plendxnocndx 13046 slotsdifdsndx 13057 slotsdifunifndx 13064 imasvalstrd 13102 cnfldstr 14320 nn0subm 14345 znf1o 14413 fczpsrbag 14433 psr1clfi 14450 mplsubgfilemm 14460 dveflem 15198 plyconst 15217 plycolemc 15230 pilem3 15255 1kp2ke3k 15660 ex-fac 15664 012of 15930 isomninnlem 15969 iswomninnlem 15988 iswomni0 15990 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |