Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | elnn0 9116 | . . . 4 | |
3 | 2 | biimpri 132 | . . 3 |
4 | 3 | olcs 726 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 698 wceq 1343 wcel 2136 cc0 7753 cn 8857 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-n0 9115 |
This theorem is referenced by: 0xnn0 9183 elnn0z 9204 nn0ind-raph 9308 10nn0 9339 declei 9357 numlti 9358 nummul1c 9370 decaddc2 9377 decrmanc 9378 decrmac 9379 decaddm10 9380 decaddi 9381 decaddci 9382 decaddci2 9383 decmul1 9385 decmulnc 9388 6p5e11 9394 7p4e11 9397 8p3e11 9402 9p2e11 9408 10p10e20 9416 fz01or 10046 0elfz 10053 4fvwrd4 10075 fvinim0ffz 10176 0tonninf 10374 exple1 10511 sq10 10625 bc0k 10669 bcn1 10671 bccl 10680 fihasheq0 10707 fsumnn0cl 11344 binom 11425 bcxmas 11430 isumnn0nn 11434 geoserap 11448 ef0lem 11601 ege2le3 11612 ef4p 11635 efgt1p2 11636 efgt1p 11637 nn0o 11844 ndvdssub 11867 gcdval 11892 gcdcl 11899 dfgcd3 11943 nn0seqcvgd 11973 algcvg 11980 eucalg 11991 lcmcl 12004 pw2dvdslemn 12097 pclem0 12218 pcpre1 12224 pcfac 12280 ennnfonelemj0 12334 ennnfonelem0 12338 ennnfonelem1 12340 dveflem 13327 pilem3 13344 1kp2ke3k 13605 ex-fac 13609 012of 13875 isomninnlem 13909 iswomninnlem 13928 iswomni0 13930 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |