| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | Unicode version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | elnn0 9332 |
. . . 4
| |
| 3 | 2 | biimpri 133 |
. . 3
|
| 4 | 3 | olcs 738 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-i2m1 8065 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-n0 9331 |
| This theorem is referenced by: 0xnn0 9399 elnn0z 9420 nn0ind-raph 9525 10nn0 9556 declei 9574 numlti 9575 nummul1c 9587 decaddc2 9594 decrmanc 9595 decrmac 9596 decaddm10 9597 decaddi 9598 decaddci 9599 decaddci2 9600 decmul1 9602 decmulnc 9605 6p5e11 9611 7p4e11 9614 8p3e11 9619 9p2e11 9625 10p10e20 9633 fz01or 10268 0elfz 10275 4fvwrd4 10297 fvinim0ffz 10407 0tonninf 10622 exple1 10777 sq10 10894 bc0k 10938 bcn1 10940 bccl 10949 fihasheq0 10975 iswrdiz 11038 iswrddm0 11055 s1leng 11116 s1fv 11118 eqs1 11120 s111 11123 pfx00g 11166 fsumnn0cl 11829 binom 11910 bcxmas 11915 isumnn0nn 11919 geoserap 11933 ef0lem 12086 ege2le3 12097 ef4p 12120 efgt1p2 12121 efgt1p 12122 nn0o 12333 ndvdssub 12356 5ndvds3 12360 bits0 12374 0bits 12385 gcdval 12395 gcdcl 12402 dfgcd3 12446 nn0seqcvgd 12478 algcvg 12485 eucalg 12496 lcmcl 12509 pw2dvdslemn 12602 pclem0 12724 pcpre1 12730 pcfac 12788 dec5dvds2 12851 2exp11 12874 2exp16 12875 ennnfonelemj0 12887 ennnfonelem0 12891 ennnfonelem1 12893 plendxnocndx 13161 slotsdifdsndx 13172 slotsdifunifndx 13179 imasvalstrd 13217 cnfldstr 14435 nn0subm 14460 znf1o 14528 fczpsrbag 14548 psr1clfi 14565 mplsubgfilemm 14575 dveflem 15313 plyconst 15332 plycolemc 15345 pilem3 15370 1kp2ke3k 15860 ex-fac 15864 012of 16130 isomninnlem 16171 iswomninnlem 16190 iswomni0 16192 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |