![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xnn0 | GIF version |
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
0xnn0 | ⊢ 0 ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 9260 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 0nn0 9209 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | sselii 3167 | 1 ⊢ 0 ∈ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 0cc0 7829 ℕ0cn0 9194 ℕ0*cxnn0 9257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-1cn 7922 ax-icn 7924 ax-addcl 7925 ax-mulcl 7927 ax-i2m1 7934 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-n0 9195 df-xnn0 9258 |
This theorem is referenced by: 0tonninf 10457 |
Copyright terms: Public domain | W3C validator |