ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xnn0 GIF version

Theorem 0xnn0 9247
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 9244 . 2 0 ⊆ ℕ0*
2 0nn0 9193 . 2 0 ∈ ℕ0
31, 2sselii 3154 1 0 ∈ ℕ0*
Colors of variables: wff set class
Syntax hints:  wcel 2148  0cc0 7813  0cn0 9178  0*cxnn0 9241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-mulcl 7911  ax-i2m1 7918
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-n0 9179  df-xnn0 9242
This theorem is referenced by:  0tonninf  10441
  Copyright terms: Public domain W3C validator