| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xnn0 | GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 9376 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 9325 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3194 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 0cc0 7940 ℕ0cn0 9310 ℕ0*cxnn0 9373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-mulcl 8038 ax-i2m1 8045 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-n0 9311 df-xnn0 9374 |
| This theorem is referenced by: 0tonninf 10602 |
| Copyright terms: Public domain | W3C validator |