Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xnn0 | GIF version |
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
0xnn0 | ⊢ 0 ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 9180 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 0nn0 9129 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | sselii 3139 | 1 ⊢ 0 ∈ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 0cc0 7753 ℕ0cn0 9114 ℕ0*cxnn0 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-n0 9115 df-xnn0 9178 |
This theorem is referenced by: 0tonninf 10374 |
Copyright terms: Public domain | W3C validator |