| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xnn0 | GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 9423 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 9372 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3221 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 0cc0 7987 ℕ0cn0 9357 ℕ0*cxnn0 9420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-mulcl 8085 ax-i2m1 8092 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-n0 9358 df-xnn0 9421 |
| This theorem is referenced by: 0tonninf 10649 |
| Copyright terms: Public domain | W3C validator |