Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftr2 | Unicode version |
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dftr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3130 | . 2 | |
2 | df-tr 4080 | . 2 | |
3 | 19.23v 1871 | . . . 4 | |
4 | eluni 3791 | . . . . 5 | |
5 | 4 | imbi1i 237 | . . . 4 |
6 | 3, 5 | bitr4i 186 | . . 3 |
7 | 6 | albii 1458 | . 2 |
8 | 1, 2, 7 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wcel 2136 wss 3115 cuni 3788 wtr 4079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 df-uni 3789 df-tr 4080 |
This theorem is referenced by: dftr5 4082 trel 4086 suctr 4398 ordtriexmidlem 4495 ordtri2or2exmidlem 4502 onsucelsucexmidlem 4505 ordsuc 4539 tfi 4558 ordom 4583 |
Copyright terms: Public domain | W3C validator |