ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0er Unicode version

Theorem 0er 6677
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
0er  |-  (/)  Er  (/)

Proof of Theorem 0er
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4818 . . . 4  |-  Rel  (/)
21a1i 9 . . 3  |-  ( T. 
->  Rel  (/) )
3 df-br 4060 . . . . 5  |-  ( x
(/) y  <->  <. x ,  y >.  e.  (/) )
4 noel 3472 . . . . . 6  |-  -.  <. x ,  y >.  e.  (/)
54pm2.21i 647 . . . . 5  |-  ( <.
x ,  y >.  e.  (/)  ->  y (/) x )
63, 5sylbi 121 . . . 4  |-  ( x
(/) y  ->  y (/) x )
76adantl 277 . . 3  |-  ( ( T.  /\  x (/) y )  ->  y (/) x )
84pm2.21i 647 . . . . 5  |-  ( <.
x ,  y >.  e.  (/)  ->  x (/) z )
93, 8sylbi 121 . . . 4  |-  ( x
(/) y  ->  x (/) z )
109ad2antrl 490 . . 3  |-  ( ( T.  /\  ( x
(/) y  /\  y (/) z ) )  ->  x (/) z )
11 noel 3472 . . . . . 6  |-  -.  x  e.  (/)
12 noel 3472 . . . . . 6  |-  -.  <. x ,  x >.  e.  (/)
1311, 122false 703 . . . . 5  |-  ( x  e.  (/)  <->  <. x ,  x >.  e.  (/) )
14 df-br 4060 . . . . 5  |-  ( x
(/) x  <->  <. x ,  x >.  e.  (/) )
1513, 14bitr4i 187 . . . 4  |-  ( x  e.  (/)  <->  x (/) x )
1615a1i 9 . . 3  |-  ( T. 
->  ( x  e.  (/)  <->  x (/) x ) )
172, 7, 10, 16iserd 6669 . 2  |-  ( T. 
->  (/)  Er  (/) )
1817mptru 1382 1  |-  (/)  Er  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1374    e. wcel 2178   (/)c0 3468   <.cop 3646   class class class wbr 4059   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-er 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator