Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0er | Unicode version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
0er |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4745 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | df-br 3999 | . . . . 5 | |
4 | noel 3424 | . . . . . 6 | |
5 | 4 | pm2.21i 646 | . . . . 5 |
6 | 3, 5 | sylbi 121 | . . . 4 |
7 | 6 | adantl 277 | . . 3 |
8 | 4 | pm2.21i 646 | . . . . 5 |
9 | 3, 8 | sylbi 121 | . . . 4 |
10 | 9 | ad2antrl 490 | . . 3 |
11 | noel 3424 | . . . . . 6 | |
12 | noel 3424 | . . . . . 6 | |
13 | 11, 12 | 2false 701 | . . . . 5 |
14 | df-br 3999 | . . . . 5 | |
15 | 13, 14 | bitr4i 187 | . . . 4 |
16 | 15 | a1i 9 | . . 3 |
17 | 2, 7, 10, 16 | iserd 6551 | . 2 |
18 | 17 | mptru 1362 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wtru 1354 wcel 2146 c0 3420 cop 3592 class class class wbr 3998 wrel 4625 wer 6522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-er 6525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |