ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 Unicode version

Theorem cnv0 5014
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0  |-  `' (/)  =  (/)

Proof of Theorem cnv0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4989 . 2  |-  Rel  `' (/)
2 rel0 4736 . 2  |-  Rel  (/)
3 vex 2733 . . . 4  |-  x  e. 
_V
4 vex 2733 . . . 4  |-  y  e. 
_V
53, 4opelcnv 4793 . . 3  |-  ( <.
x ,  y >.  e.  `' (/)  <->  <. y ,  x >.  e.  (/) )
6 noel 3418 . . . 4  |-  -.  <. x ,  y >.  e.  (/)
7 noel 3418 . . . 4  |-  -.  <. y ,  x >.  e.  (/)
86, 72false 696 . . 3  |-  ( <.
x ,  y >.  e.  (/)  <->  <. y ,  x >.  e.  (/) )
95, 8bitr4i 186 . 2  |-  ( <.
x ,  y >.  e.  `' (/)  <->  <. x ,  y
>.  e.  (/) )
101, 2, 9eqrelriiv 4705 1  |-  `' (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   (/)c0 3414   <.cop 3586   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  xp0  5030  cnveq0  5067  co01  5125  f10  5476  f1o00  5477  tpos0  6253
  Copyright terms: Public domain W3C validator