ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 Unicode version

Theorem cnv0 4850
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0  |-  `' (/)  =  (/)

Proof of Theorem cnv0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4825 . 2  |-  Rel  `' (/)
2 rel0 4577 . 2  |-  Rel  (/)
3 vex 2625 . . . 4  |-  x  e. 
_V
4 vex 2625 . . . 4  |-  y  e. 
_V
53, 4opelcnv 4633 . . 3  |-  ( <.
x ,  y >.  e.  `' (/)  <->  <. y ,  x >.  e.  (/) )
6 noel 3293 . . . 4  |-  -.  <. x ,  y >.  e.  (/)
7 noel 3293 . . . 4  |-  -.  <. y ,  x >.  e.  (/)
86, 72false 653 . . 3  |-  ( <.
x ,  y >.  e.  (/)  <->  <. y ,  x >.  e.  (/) )
95, 8bitr4i 186 . 2  |-  ( <.
x ,  y >.  e.  `' (/)  <->  <. x ,  y
>.  e.  (/) )
101, 2, 9eqrelriiv 4547 1  |-  `' (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   (/)c0 3289   <.cop 3455   `'ccnv 4453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-cnv 4462
This theorem is referenced by:  xp0  4866  cnveq0  4902  co01  4960  f10  5302  f1o00  5303  tpos0  6055
  Copyright terms: Public domain W3C validator