![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2mulicn | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2mulicn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8387 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-icn 7343 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | mulcli 7396 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7340 ax-1re 7342 ax-icn 7343 ax-addrcl 7345 ax-mulcl 7346 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2990 df-ss 2997 df-2 8375 |
This theorem is referenced by: 2muline0 8533 imval2 10155 |
Copyright terms: Public domain | W3C validator |