ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 9140
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8989 . 2  |-  2  e.  CC
2 ax-icn 7905 . 2  |-  _i  e.  CC
31, 2mulcli 7961 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2148  (class class class)co 5874   CCcc 7808   _ici 7812    x. cmul 7815   2c2 8969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7902  ax-1re 7904  ax-icn 7905  ax-addrcl 7907  ax-mulcl 7908
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3135  df-ss 3142  df-2 8977
This theorem is referenced by:  2muline0  9143  imval2  10902  sinval  11709  sinf  11711  sinneg  11733  efival  11739  sinadd  11743  sincn  14160
  Copyright terms: Public domain W3C validator