ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 9112
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8961 . 2  |-  2  e.  CC
2 ax-icn 7881 . 2  |-  _i  e.  CC
31, 2mulcli 7937 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2146  (class class class)co 5865   CCcc 7784   _ici 7788    x. cmul 7791   2c2 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-resscn 7878  ax-1re 7880  ax-icn 7881  ax-addrcl 7883  ax-mulcl 7884
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140  df-2 8949
This theorem is referenced by:  2muline0  9115  imval2  10869  sinval  11676  sinf  11678  sinneg  11700  efival  11706  sinadd  11710  sincn  13759
  Copyright terms: Public domain W3C validator