ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 9333
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9181 . 2  |-  2  e.  CC
2 ax-icn 8094 . 2  |-  _i  e.  CC
31, 2mulcli 8151 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2200  (class class class)co 6001   CCcc 7997   _ici 8001    x. cmul 8004   2c2 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1re 8093  ax-icn 8094  ax-addrcl 8096  ax-mulcl 8097
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-2 9169
This theorem is referenced by:  2muline0  9336  imval2  11405  sinval  12213  sinf  12215  sinneg  12237  efival  12243  sinadd  12247  sincn  15443
  Copyright terms: Public domain W3C validator