ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 9259
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9107 . 2  |-  2  e.  CC
2 ax-icn 8020 . 2  |-  _i  e.  CC
31, 2mulcli 8077 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2176  (class class class)co 5944   CCcc 7923   _ici 7927    x. cmul 7930   2c2 9087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1re 8019  ax-icn 8020  ax-addrcl 8022  ax-mulcl 8023
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-2 9095
This theorem is referenced by:  2muline0  9262  imval2  11205  sinval  12013  sinf  12015  sinneg  12037  efival  12043  sinadd  12047  sincn  15241
  Copyright terms: Public domain W3C validator