ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 9261
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9109 . 2  |-  2  e.  CC
2 ax-icn 8022 . 2  |-  _i  e.  CC
31, 2mulcli 8079 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2176  (class class class)co 5946   CCcc 7925   _ici 7929    x. cmul 7932   2c2 9089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8019  ax-1re 8021  ax-icn 8022  ax-addrcl 8024  ax-mulcl 8025
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-2 9097
This theorem is referenced by:  2muline0  9264  imval2  11238  sinval  12046  sinf  12048  sinneg  12070  efival  12076  sinadd  12080  sincn  15274
  Copyright terms: Public domain W3C validator