ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 8954
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8803 . 2  |-  2  e.  CC
2 ax-icn 7727 . 2  |-  _i  e.  CC
31, 2mulcli 7783 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1480  (class class class)co 5774   CCcc 7630   _ici 7634    x. cmul 7637   2c2 8783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7724  ax-1re 7726  ax-icn 7727  ax-addrcl 7729  ax-mulcl 7730
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-in 3077  df-ss 3084  df-2 8791
This theorem is referenced by:  2muline0  8957  imval2  10678  sinval  11420  sinf  11422  sinneg  11444  efival  11450  sinadd  11454  sincn  12873
  Copyright terms: Public domain W3C validator