ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn Unicode version

Theorem 2mulicn 8530
Description:  ( 2  x.  _i )  e.  CC (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn  |-  ( 2  x.  _i )  e.  CC

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8387 . 2  |-  2  e.  CC
2 ax-icn 7343 . 2  |-  _i  e.  CC
31, 2mulcli 7396 1  |-  ( 2  x.  _i )  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1434  (class class class)co 5591   CCcc 7251   _ici 7255    x. cmul 7258   2c2 8366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-resscn 7340  ax-1re 7342  ax-icn 7343  ax-addrcl 7345  ax-mulcl 7346
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2990  df-ss 2997  df-2 8375
This theorem is referenced by:  2muline0  8533  imval2  10155
  Copyright terms: Public domain W3C validator