ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iap0 Unicode version

Theorem iap0 9260
Description: The imaginary unit  _i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
Assertion
Ref Expression
iap0  |-  _i #  0

Proof of Theorem iap0
StepHypRef Expression
1 1ap0 8663 . . . 4  |-  1 #  0
21olci 734 . . 3  |-  ( 0 #  0  \/  1 #  0 )
3 0re 8072 . . . 4  |-  0  e.  RR
4 1re 8071 . . . 4  |-  1  e.  RR
5 apreim 8676 . . . 4  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  e.  RR  /\  0  e.  RR ) )  -> 
( ( 0  +  ( _i  x.  1 ) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( 0 #  0  \/  1 #  0 ) ) )
63, 4, 3, 3, 5mp4an 427 . . 3  |-  ( ( 0  +  ( _i  x.  1 ) ) #  ( 0  +  ( _i  x.  0 ) )  <->  ( 0 #  0  \/  1 #  0 ) )
72, 6mpbir 146 . 2  |-  ( 0  +  ( _i  x.  1 ) ) #  ( 0  +  ( _i  x.  0 ) )
8 ax-icn 8020 . . . . 5  |-  _i  e.  CC
98mulridi 8074 . . . 4  |-  ( _i  x.  1 )  =  _i
109oveq2i 5955 . . 3  |-  ( 0  +  ( _i  x.  1 ) )  =  ( 0  +  _i )
118addlidi 8215 . . 3  |-  ( 0  +  _i )  =  _i
1210, 11eqtri 2226 . 2  |-  ( 0  +  ( _i  x.  1 ) )  =  _i
13 it0e0 9258 . . . 4  |-  ( _i  x.  0 )  =  0
1413oveq2i 5955 . . 3  |-  ( 0  +  ( _i  x.  0 ) )  =  ( 0  +  0 )
15 00id 8213 . . 3  |-  ( 0  +  0 )  =  0
1614, 15eqtri 2226 . 2  |-  ( 0  +  ( _i  x.  0 ) )  =  0
177, 12, 163brtr3i 4073 1  |-  _i #  0
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926   _ici 7927    + caddc 7928    x. cmul 7930   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by:  2muliap0  9261  irec  10784  iexpcyc  10789  imval  11161  imre  11162  reim  11163  crim  11169  cjreb  11177  tanval2ap  12024  tanval3ap  12025  efival  12043
  Copyright terms: Public domain W3C validator