ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinadd Unicode version

Theorem sinadd 12242
Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )

Proof of Theorem sinadd
StepHypRef Expression
1 addcl 8120 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 sinval 12208 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( sin `  ( A  +  B ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) ) )
31, 2syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  (
2  x.  _i ) ) )
4 2cn 9177 . . . . . . 7  |-  2  e.  CC
54a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6 ax-icn 8090 . . . . . . 7  |-  _i  e.  CC
76a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
8 coscl 12213 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
98adantr 276 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  A
)  e.  CC )
10 sincl 12212 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
1110adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  B
)  e.  CC )
129, 11mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  B ) )  e.  CC )
13 sincl 12212 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1413adantr 276 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  A
)  e.  CC )
15 coscl 12213 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
1615adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  B
)  e.  CC )
1714, 16mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  e.  CC )
1812, 17addcld 8162 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) )  e.  CC )
195, 7, 18mulassd 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) ) ) ) )
207, 12, 17adddid 8167 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( _i  x.  ( ( cos `  A )  x.  ( sin `  B
) ) )  +  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) ) ) )
217, 9, 11mul12d 8294 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  A
)  x.  ( sin `  B ) ) )  =  ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) ) )
2214, 16mulcomd 8164 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  =  ( ( cos `  B
)  x.  ( sin `  A ) ) )
2322oveq2d 6016 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( _i  x.  ( ( cos `  B
)  x.  ( sin `  A ) ) ) )
247, 16, 14mul12d 8294 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  B
)  x.  ( sin `  A ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2523, 24eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2621, 25oveq12d 6018 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( cos `  A
)  x.  ( sin `  B ) ) )  +  ( _i  x.  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2720, 26eqtrd 2262 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2827oveq2d 6016 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
_i  x.  ( (
( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
2919, 28eqtrd 2262 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
30 mulcl 8122 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( _i  x.  ( sin `  B ) )  e.  CC )
316, 11, 30sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  B ) )  e.  CC )
329, 31mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  e.  CC )
33 mulcl 8122 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
346, 14, 33sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
3516, 34mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
3632, 35addcld 8162 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
37 mulcl 8122 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )  ->  ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  e.  CC )
384, 36, 37sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  e.  CC )
39 2mulicn 9329 . . . . . 6  |-  ( 2  x.  _i )  e.  CC
4039a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i )  e.  CC )
41 2muliap0 9331 . . . . . 6  |-  ( 2  x.  _i ) #  0
4241a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i ) #  0 )
4338, 40, 18, 42divmulapd 8955 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( cos `  A )  x.  ( sin `  B
) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) )  <-> 
( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
4429, 43mpbird 167 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
459, 16mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
4631, 34mulcld 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
4745, 46addcld 8162 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
4847, 36, 36pnncand 8492 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  -  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )  =  ( ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
49 adddi 8127 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
_i  x.  ( A  +  B ) )  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
506, 49mp3an1 1358 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( A  +  B )
)  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
5150fveq2d 5630 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) ) )
52 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
53 mulcl 8122 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
546, 52, 53sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
55 simpr 110 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
56 mulcl 8122 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
576, 55, 56sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
58 efadd 12181 . . . . . . . 8  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
5954, 57, 58syl2anc 411 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
60 efival 12238 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
61 efival 12238 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( _i  x.  B ) )  =  ( ( cos `  B
)  +  ( _i  x.  ( sin `  B
) ) ) )
6260, 61oveqan12d 6019 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) ) )
639, 34, 16, 31muladdd 8558 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
6462, 63eqtrd 2262 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) ) )
6551, 59, 643eqtrd 2266 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
66 negicn 8343 . . . . . . . . 9  |-  -u _i  e.  CC
67 adddi 8127 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
6866, 67mp3an1 1358 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
6968fveq2d 5630 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) ) )
70 mulcl 8122 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
7166, 52, 70sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
72 mulcl 8122 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
7366, 55, 72sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
74 efadd 12181 . . . . . . . 8  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  ( -u _i  x.  B )  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
7571, 73, 74syl2anc 411 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
76 efmival 12239 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
77 efmival 12239 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( -u _i  x.  B ) )  =  ( ( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) )
7876, 77oveqan12d 6019 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) ) )
799, 34, 16, 31mulsubd 8559 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  -  (
_i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8078, 79eqtrd 2262 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8169, 75, 803eqtrd 2266 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8265, 81oveq12d 6018 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  -  (
( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  -  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
83362timesd 9350 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8448, 82, 833eqtr4d 2272 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8584oveq1d 6015 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) ) )
8617, 12addcomd 8293 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
8744, 85, 863eqtr4d 2272 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
883, 87eqtrd 2262 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995   _ici 7997    + caddc 7998    x. cmul 8000    - cmin 8313   -ucneg 8314   # cap 8724    / cdiv 8815   2c2 9157   expce 12148   sincsin 12150   cosccos 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-cos 12157
This theorem is referenced by:  tanaddap  12245  sinsub  12246  addsin  12248  subsin  12249  sin2t  12255  demoivreALT  12280  sinppi  15485  sinhalfpip  15488
  Copyright terms: Public domain W3C validator