| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinadd | Unicode version | ||
| Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| sinadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8004 |
. . 3
| |
| 2 | sinval 11867 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 2cn 9061 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | ax-icn 7974 |
. . . . . . 7
| |
| 7 | 6 | a1i 9 |
. . . . . 6
|
| 8 | coscl 11872 |
. . . . . . . . 9
| |
| 9 | 8 | adantr 276 |
. . . . . . . 8
|
| 10 | sincl 11871 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 9, 11 | mulcld 8047 |
. . . . . . 7
|
| 13 | sincl 11871 |
. . . . . . . . 9
| |
| 14 | 13 | adantr 276 |
. . . . . . . 8
|
| 15 | coscl 11872 |
. . . . . . . . 9
| |
| 16 | 15 | adantl 277 |
. . . . . . . 8
|
| 17 | 14, 16 | mulcld 8047 |
. . . . . . 7
|
| 18 | 12, 17 | addcld 8046 |
. . . . . 6
|
| 19 | 5, 7, 18 | mulassd 8050 |
. . . . 5
|
| 20 | 7, 12, 17 | adddid 8051 |
. . . . . . 7
|
| 21 | 7, 9, 11 | mul12d 8178 |
. . . . . . . 8
|
| 22 | 14, 16 | mulcomd 8048 |
. . . . . . . . . 10
|
| 23 | 22 | oveq2d 5938 |
. . . . . . . . 9
|
| 24 | 7, 16, 14 | mul12d 8178 |
. . . . . . . . 9
|
| 25 | 23, 24 | eqtrd 2229 |
. . . . . . . 8
|
| 26 | 21, 25 | oveq12d 5940 |
. . . . . . 7
|
| 27 | 20, 26 | eqtrd 2229 |
. . . . . 6
|
| 28 | 27 | oveq2d 5938 |
. . . . 5
|
| 29 | 19, 28 | eqtrd 2229 |
. . . 4
|
| 30 | mulcl 8006 |
. . . . . . . . 9
| |
| 31 | 6, 11, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 9, 31 | mulcld 8047 |
. . . . . . 7
|
| 33 | mulcl 8006 |
. . . . . . . . 9
| |
| 34 | 6, 14, 33 | sylancr 414 |
. . . . . . . 8
|
| 35 | 16, 34 | mulcld 8047 |
. . . . . . 7
|
| 36 | 32, 35 | addcld 8046 |
. . . . . 6
|
| 37 | mulcl 8006 |
. . . . . 6
| |
| 38 | 4, 36, 37 | sylancr 414 |
. . . . 5
|
| 39 | 2mulicn 9213 |
. . . . . 6
| |
| 40 | 39 | a1i 9 |
. . . . 5
|
| 41 | 2muliap0 9215 |
. . . . . 6
| |
| 42 | 41 | a1i 9 |
. . . . 5
|
| 43 | 38, 40, 18, 42 | divmulapd 8839 |
. . . 4
|
| 44 | 29, 43 | mpbird 167 |
. . 3
|
| 45 | 9, 16 | mulcld 8047 |
. . . . . . 7
|
| 46 | 31, 34 | mulcld 8047 |
. . . . . . 7
|
| 47 | 45, 46 | addcld 8046 |
. . . . . 6
|
| 48 | 47, 36, 36 | pnncand 8376 |
. . . . 5
|
| 49 | adddi 8011 |
. . . . . . . . 9
| |
| 50 | 6, 49 | mp3an1 1335 |
. . . . . . . 8
|
| 51 | 50 | fveq2d 5562 |
. . . . . . 7
|
| 52 | simpl 109 |
. . . . . . . . 9
| |
| 53 | mulcl 8006 |
. . . . . . . . 9
| |
| 54 | 6, 52, 53 | sylancr 414 |
. . . . . . . 8
|
| 55 | simpr 110 |
. . . . . . . . 9
| |
| 56 | mulcl 8006 |
. . . . . . . . 9
| |
| 57 | 6, 55, 56 | sylancr 414 |
. . . . . . . 8
|
| 58 | efadd 11840 |
. . . . . . . 8
| |
| 59 | 54, 57, 58 | syl2anc 411 |
. . . . . . 7
|
| 60 | efival 11897 |
. . . . . . . . 9
| |
| 61 | efival 11897 |
. . . . . . . . 9
| |
| 62 | 60, 61 | oveqan12d 5941 |
. . . . . . . 8
|
| 63 | 9, 34, 16, 31 | muladdd 8442 |
. . . . . . . 8
|
| 64 | 62, 63 | eqtrd 2229 |
. . . . . . 7
|
| 65 | 51, 59, 64 | 3eqtrd 2233 |
. . . . . 6
|
| 66 | negicn 8227 |
. . . . . . . . 9
| |
| 67 | adddi 8011 |
. . . . . . . . 9
| |
| 68 | 66, 67 | mp3an1 1335 |
. . . . . . . 8
|
| 69 | 68 | fveq2d 5562 |
. . . . . . 7
|
| 70 | mulcl 8006 |
. . . . . . . . 9
| |
| 71 | 66, 52, 70 | sylancr 414 |
. . . . . . . 8
|
| 72 | mulcl 8006 |
. . . . . . . . 9
| |
| 73 | 66, 55, 72 | sylancr 414 |
. . . . . . . 8
|
| 74 | efadd 11840 |
. . . . . . . 8
| |
| 75 | 71, 73, 74 | syl2anc 411 |
. . . . . . 7
|
| 76 | efmival 11898 |
. . . . . . . . 9
| |
| 77 | efmival 11898 |
. . . . . . . . 9
| |
| 78 | 76, 77 | oveqan12d 5941 |
. . . . . . . 8
|
| 79 | 9, 34, 16, 31 | mulsubd 8443 |
. . . . . . . 8
|
| 80 | 78, 79 | eqtrd 2229 |
. . . . . . 7
|
| 81 | 69, 75, 80 | 3eqtrd 2233 |
. . . . . 6
|
| 82 | 65, 81 | oveq12d 5940 |
. . . . 5
|
| 83 | 36 | 2timesd 9234 |
. . . . 5
|
| 84 | 48, 82, 83 | 3eqtr4d 2239 |
. . . 4
|
| 85 | 84 | oveq1d 5937 |
. . 3
|
| 86 | 17, 12 | addcomd 8177 |
. . 3
|
| 87 | 44, 85, 86 | 3eqtr4d 2239 |
. 2
|
| 88 | 3, 87 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 df-cos 11816 |
| This theorem is referenced by: tanaddap 11904 sinsub 11905 addsin 11907 subsin 11908 sin2t 11914 demoivreALT 11939 sinppi 15053 sinhalfpip 15056 |
| Copyright terms: Public domain | W3C validator |