ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinadd Unicode version

Theorem sinadd 11450
Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )

Proof of Theorem sinadd
StepHypRef Expression
1 addcl 7752 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 sinval 11416 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( sin `  ( A  +  B ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) ) )
31, 2syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  (
2  x.  _i ) ) )
4 2cn 8798 . . . . . . 7  |-  2  e.  CC
54a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6 ax-icn 7722 . . . . . . 7  |-  _i  e.  CC
76a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
8 coscl 11421 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
98adantr 274 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  A
)  e.  CC )
10 sincl 11420 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
1110adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  B
)  e.  CC )
129, 11mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  B ) )  e.  CC )
13 sincl 11420 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1413adantr 274 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  A
)  e.  CC )
15 coscl 11421 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
1615adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  B
)  e.  CC )
1714, 16mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  e.  CC )
1812, 17addcld 7792 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) )  e.  CC )
195, 7, 18mulassd 7796 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) ) ) ) )
207, 12, 17adddid 7797 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( _i  x.  ( ( cos `  A )  x.  ( sin `  B
) ) )  +  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) ) ) )
217, 9, 11mul12d 7921 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  A
)  x.  ( sin `  B ) ) )  =  ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) ) )
2214, 16mulcomd 7794 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  =  ( ( cos `  B
)  x.  ( sin `  A ) ) )
2322oveq2d 5790 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( _i  x.  ( ( cos `  B
)  x.  ( sin `  A ) ) ) )
247, 16, 14mul12d 7921 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  B
)  x.  ( sin `  A ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2523, 24eqtrd 2172 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2621, 25oveq12d 5792 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( cos `  A
)  x.  ( sin `  B ) ) )  +  ( _i  x.  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2720, 26eqtrd 2172 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2827oveq2d 5790 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
_i  x.  ( (
( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
2919, 28eqtrd 2172 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
30 mulcl 7754 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( _i  x.  ( sin `  B ) )  e.  CC )
316, 11, 30sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  B ) )  e.  CC )
329, 31mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  e.  CC )
33 mulcl 7754 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
346, 14, 33sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
3516, 34mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
3632, 35addcld 7792 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
37 mulcl 7754 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )  ->  ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  e.  CC )
384, 36, 37sylancr 410 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  e.  CC )
39 2mulicn 8949 . . . . . 6  |-  ( 2  x.  _i )  e.  CC
4039a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i )  e.  CC )
41 2muliap0 8951 . . . . . 6  |-  ( 2  x.  _i ) #  0
4241a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i ) #  0 )
4338, 40, 18, 42divmulapd 8579 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( cos `  A )  x.  ( sin `  B
) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) )  <-> 
( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
4429, 43mpbird 166 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
459, 16mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
4631, 34mulcld 7793 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
4745, 46addcld 7792 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
4847, 36, 36pnncand 8119 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  -  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )  =  ( ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
49 adddi 7759 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
_i  x.  ( A  +  B ) )  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
506, 49mp3an1 1302 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( A  +  B )
)  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
5150fveq2d 5425 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) ) )
52 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
53 mulcl 7754 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
546, 52, 53sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
55 simpr 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
56 mulcl 7754 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
576, 55, 56sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
58 efadd 11388 . . . . . . . 8  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
5954, 57, 58syl2anc 408 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
60 efival 11446 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
61 efival 11446 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( _i  x.  B ) )  =  ( ( cos `  B
)  +  ( _i  x.  ( sin `  B
) ) ) )
6260, 61oveqan12d 5793 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) ) )
639, 34, 16, 31muladdd 8185 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
6462, 63eqtrd 2172 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) ) )
6551, 59, 643eqtrd 2176 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
66 negicn 7970 . . . . . . . . 9  |-  -u _i  e.  CC
67 adddi 7759 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
6866, 67mp3an1 1302 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
6968fveq2d 5425 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) ) )
70 mulcl 7754 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
7166, 52, 70sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
72 mulcl 7754 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
7366, 55, 72sylancr 410 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
74 efadd 11388 . . . . . . . 8  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  ( -u _i  x.  B )  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
7571, 73, 74syl2anc 408 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
76 efmival 11447 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
77 efmival 11447 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( -u _i  x.  B ) )  =  ( ( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) )
7876, 77oveqan12d 5793 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) ) )
799, 34, 16, 31mulsubd 8186 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  -  (
_i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8078, 79eqtrd 2172 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8169, 75, 803eqtrd 2176 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8265, 81oveq12d 5792 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  -  (
( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  -  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
83362timesd 8969 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8448, 82, 833eqtr4d 2182 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8584oveq1d 5789 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) ) )
8617, 12addcomd 7920 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
8744, 85, 863eqtr4d 2182 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
883, 87eqtrd 2172 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7625   0cc0 7627   _ici 7629    + caddc 7630    x. cmul 7632    - cmin 7940   -ucneg 7941   # cap 8350    / cdiv 8439   2c2 8778   expce 11355   sincsin 11357   cosccos 11358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-ico 9684  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364
This theorem is referenced by:  tanaddap  11453  sinsub  11454  addsin  11456  subsin  11457  sin2t  11463  demoivreALT  11487  sinppi  12911  sinhalfpip  12914
  Copyright terms: Public domain W3C validator