ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 9230
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9078 . 2 2 ∈ ℂ
2 ax-icn 7991 . 2 i ∈ ℂ
31, 2mulcli 8048 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  (class class class)co 5925  cc 7894  ici 7898   · cmul 7901  2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1re 7990  ax-icn 7991  ax-addrcl 7993  ax-mulcl 7994
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9066
This theorem is referenced by:  2muline0  9233  imval2  11076  sinval  11884  sinf  11886  sinneg  11908  efival  11914  sinadd  11918  sincn  15089
  Copyright terms: Public domain W3C validator