ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 9329
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9177 . 2 2 ∈ ℂ
2 ax-icn 8090 . 2 i ∈ ℂ
31, 2mulcli 8147 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6000  cc 7993  ici 7997   · cmul 8000  2c2 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1re 8089  ax-icn 8090  ax-addrcl 8092  ax-mulcl 8093
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-2 9165
This theorem is referenced by:  2muline0  9332  imval2  11400  sinval  12208  sinf  12210  sinneg  12232  efival  12238  sinadd  12242  sincn  15437
  Copyright terms: Public domain W3C validator