| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version | ||
| Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9177 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 8090 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 8147 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 ici 7997 · cmul 8000 2c2 9157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1re 8089 ax-icn 8090 ax-addrcl 8092 ax-mulcl 8093 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 |
| This theorem is referenced by: 2muline0 9332 imval2 11400 sinval 12208 sinf 12210 sinneg 12232 efival 12238 sinadd 12242 sincn 15437 |
| Copyright terms: Public domain | W3C validator |