ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 9213
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9061 . 2 2 ∈ ℂ
2 ax-icn 7974 . 2 i ∈ ℂ
31, 2mulcli 8031 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  (class class class)co 5922  cc 7877  ici 7881   · cmul 7884  2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1re 7973  ax-icn 7974  ax-addrcl 7976  ax-mulcl 7977
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9049
This theorem is referenced by:  2muline0  9216  imval2  11059  sinval  11867  sinf  11869  sinneg  11891  efival  11897  sinadd  11901  sincn  15005
  Copyright terms: Public domain W3C validator