Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version |
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8928 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 7848 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 7904 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 ici 7755 · cmul 7758 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1re 7847 ax-icn 7848 ax-addrcl 7850 ax-mulcl 7851 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 |
This theorem is referenced by: 2muline0 9082 imval2 10836 sinval 11643 sinf 11645 sinneg 11667 efival 11673 sinadd 11677 sincn 13330 |
Copyright terms: Public domain | W3C validator |