![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version |
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9043 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 7957 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 8014 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5910 ℂcc 7860 ici 7864 · cmul 7867 2c2 9023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7954 ax-1re 7956 ax-icn 7957 ax-addrcl 7959 ax-mulcl 7960 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-2 9031 |
This theorem is referenced by: 2muline0 9197 imval2 11025 sinval 11832 sinf 11834 sinneg 11856 efival 11862 sinadd 11866 sincn 14846 |
Copyright terms: Public domain | W3C validator |