ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 9258
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9106 . 2 2 ∈ ℂ
2 ax-icn 8019 . 2 i ∈ ℂ
31, 2mulcli 8076 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2175  (class class class)co 5943  cc 7922  ici 7926   · cmul 7929  2c2 9086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1re 8018  ax-icn 8019  ax-addrcl 8021  ax-mulcl 8022
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-2 9094
This theorem is referenced by:  2muline0  9261  imval2  11147  sinval  11955  sinf  11957  sinneg  11979  efival  11985  sinadd  11989  sincn  15183
  Copyright terms: Public domain W3C validator