ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 9279
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 9127 . 2 2 ∈ ℂ
2 ax-icn 8040 . 2 i ∈ ℂ
31, 2mulcli 8097 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2177  (class class class)co 5957  cc 7943  ici 7947   · cmul 7950  2c2 9107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1re 8039  ax-icn 8040  ax-addrcl 8042  ax-mulcl 8043
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-2 9115
This theorem is referenced by:  2muline0  9282  imval2  11280  sinval  12088  sinf  12090  sinneg  12112  efival  12118  sinadd  12122  sincn  15316
  Copyright terms: Public domain W3C validator