ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 8608
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8464 . 2 2 ∈ ℂ
2 ax-icn 7419 . 2 i ∈ ℂ
31, 2mulcli 7472 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 1438  (class class class)co 5634  cc 7327  ici 7331   · cmul 7334  2c2 8444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7416  ax-1re 7418  ax-icn 7419  ax-addrcl 7421  ax-mulcl 7422
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-in 3003  df-ss 3010  df-2 8452
This theorem is referenced by:  2muline0  8611  imval2  10293
  Copyright terms: Public domain W3C validator