| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version | ||
| Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9106 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 8019 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 8076 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 ici 7926 · cmul 7929 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1re 8018 ax-icn 8019 ax-addrcl 8021 ax-mulcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-2 9094 |
| This theorem is referenced by: 2muline0 9261 imval2 11147 sinval 11955 sinf 11957 sinneg 11979 efival 11985 sinadd 11989 sincn 15183 |
| Copyright terms: Public domain | W3C validator |