| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version | ||
| Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9127 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 8040 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 8097 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 ici 7947 · cmul 7950 2c2 9107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1re 8039 ax-icn 8040 ax-addrcl 8042 ax-mulcl 8043 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-2 9115 |
| This theorem is referenced by: 2muline0 9282 imval2 11280 sinval 12088 sinf 12090 sinneg 12112 efival 12118 sinadd 12122 sincn 15316 |
| Copyright terms: Public domain | W3C validator |