| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| 2cn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2re 9060 | 
. 2
 | |
| 2 | 1 | recni 8038 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9049 | 
| This theorem is referenced by: 2ex 9062 2cnd 9063 2m1e1 9108 3m1e2 9110 2p2e4 9117 times2 9119 2div2e1 9123 1p2e3 9125 3p3e6 9133 4p3e7 9135 5p3e8 9138 6p3e9 9141 2t1e2 9144 2t2e4 9145 3t3e9 9148 2t0e0 9150 4d2e2 9151 2cnne0 9200 1mhlfehlf 9209 8th4div3 9210 halfpm6th 9211 2mulicn 9213 2muliap0 9215 halfcl 9217 half0 9219 2halves 9220 halfaddsub 9225 div4p1lem1div2 9245 3halfnz 9423 zneo 9427 nneoor 9428 zeo 9431 7p3e10 9531 4t4e16 9555 6t3e18 9561 7t7e49 9570 8t5e40 9574 9t9e81 9585 decbin0 9596 decbin2 9597 halfthird 9599 fztpval 10158 fz0tp 10197 fz0to4untppr 10199 fzo0to3tp 10295 2tnp1ge0ge0 10391 fldiv4lem1div2 10397 expubnd 10688 sq2 10727 sq4e2t8 10729 cu2 10730 subsq2 10739 binom2sub 10745 binom3 10749 zesq 10750 fac2 10823 fac3 10824 faclbnd2 10834 bcn2 10856 4bc2eq6 10866 crre 11022 addcj 11056 imval2 11059 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemnm 11183 resqrexlemcvg 11184 amgm2 11283 arisum 11663 arisum2 11664 geo2sum2 11680 geo2lim 11681 geoihalfsum 11687 efcllemp 11823 ege2le3 11836 tanval2ap 11878 tanval3ap 11879 efi4p 11882 efival 11897 sinadd 11901 cosadd 11902 sinmul 11909 cosmul 11910 cos2tsin 11916 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos1bnd 11924 cos2bnd 11925 cos01gt0 11928 sin02gt0 11929 sin4lt0 11932 cos12dec 11933 egt2lt3 11945 odd2np1lem 12037 odd2np1 12038 ltoddhalfle 12058 halfleoddlt 12059 opoe 12060 omoe 12061 opeo 12062 omeo 12063 nno 12071 nn0o 12072 flodddiv4 12101 bits0 12112 bitsfzolem 12118 6gcd4e2 12162 3lcm2e6woprm 12254 6lcm4e12 12255 sqrt2irrlem 12329 oddpwdclemodd 12340 pythagtriplem1 12434 pythagtriplem12 12444 pythagtriplem14 12446 4sqlem11 12570 4sqlem12 12571 dec5dvds 12581 dec2nprm 12584 2exp5 12601 2exp6 12602 2exp7 12603 2exp8 12604 2exp11 12605 2exp16 12606 maxcncf 14851 mincncf 14852 coscn 15006 sinhalfpilem 15027 cospi 15036 ef2pi 15041 ef2kpi 15042 efper 15043 sinperlem 15044 sin2kpi 15047 cos2kpi 15048 sin2pim 15049 cos2pim 15050 ptolemy 15060 sincosq3sgn 15064 sincosq4sgn 15065 sinq12gt0 15066 cosq23lt0 15069 coseq00topi 15071 tangtx 15074 sincos4thpi 15076 sincos6thpi 15078 sincos3rdpi 15079 pigt3 15080 abssinper 15082 coskpi 15084 cosq34lt1 15086 logsqrt 15159 2logb9irrALT 15210 1sgm2ppw 15231 perfect1 15234 perfectlem1 15235 perfectlem2 15236 perfect 15237 lgsdir2lem2 15270 gausslemma2dlem6 15308 lgsquadlem1 15318 lgsquadlem2 15319 lgsquad2lem2 15323 m1lgs 15326 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgsoddprmlem2 15347 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-fl 15371 ex-ceil 15372 ex-exp 15373 ex-fac 15374 | 
| Copyright terms: Public domain | W3C validator |