![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version |
Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
2cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9054 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 8033 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-2 9043 |
This theorem is referenced by: 2ex 9056 2cnd 9057 2m1e1 9102 3m1e2 9104 2p2e4 9111 times2 9113 2div2e1 9117 1p2e3 9119 3p3e6 9127 4p3e7 9129 5p3e8 9132 6p3e9 9135 2t1e2 9138 2t2e4 9139 3t3e9 9142 2t0e0 9144 4d2e2 9145 2cnne0 9194 1mhlfehlf 9203 8th4div3 9204 halfpm6th 9205 2mulicn 9207 2muliap0 9209 halfcl 9211 half0 9213 2halves 9214 halfaddsub 9219 div4p1lem1div2 9239 3halfnz 9417 zneo 9421 nneoor 9422 zeo 9425 7p3e10 9525 4t4e16 9549 6t3e18 9555 7t7e49 9564 8t5e40 9568 9t9e81 9579 decbin0 9590 decbin2 9591 halfthird 9593 fztpval 10152 fz0tp 10191 fz0to4untppr 10193 fzo0to3tp 10289 2tnp1ge0ge0 10373 fldiv4lem1div2 10379 expubnd 10670 sq2 10709 sq4e2t8 10711 cu2 10712 subsq2 10721 binom2sub 10727 binom3 10731 zesq 10732 fac2 10805 fac3 10806 faclbnd2 10816 bcn2 10838 4bc2eq6 10848 crre 11004 addcj 11038 imval2 11041 resqrexlemover 11157 resqrexlemcalc1 11161 resqrexlemnm 11165 resqrexlemcvg 11166 amgm2 11265 arisum 11644 arisum2 11645 geo2sum2 11661 geo2lim 11662 geoihalfsum 11668 efcllemp 11804 ege2le3 11817 tanval2ap 11859 tanval3ap 11860 efi4p 11863 efival 11878 sinadd 11882 cosadd 11883 sinmul 11890 cosmul 11891 cos2tsin 11897 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 cos1bnd 11905 cos2bnd 11906 cos01gt0 11909 sin02gt0 11910 sin4lt0 11913 cos12dec 11914 egt2lt3 11926 odd2np1lem 12016 odd2np1 12017 ltoddhalfle 12037 halfleoddlt 12038 opoe 12039 omoe 12040 opeo 12041 omeo 12042 nno 12050 nn0o 12051 flodddiv4 12078 6gcd4e2 12135 3lcm2e6woprm 12227 6lcm4e12 12228 sqrt2irrlem 12302 oddpwdclemodd 12313 pythagtriplem1 12406 pythagtriplem12 12416 pythagtriplem14 12418 4sqlem11 12542 4sqlem12 12543 maxcncf 14794 mincncf 14795 coscn 14946 sinhalfpilem 14967 cospi 14976 ef2pi 14981 ef2kpi 14982 efper 14983 sinperlem 14984 sin2kpi 14987 cos2kpi 14988 sin2pim 14989 cos2pim 14990 ptolemy 15000 sincosq3sgn 15004 sincosq4sgn 15005 sinq12gt0 15006 cosq23lt0 15009 coseq00topi 15011 tangtx 15014 sincos4thpi 15016 sincos6thpi 15018 sincos3rdpi 15019 pigt3 15020 abssinper 15022 coskpi 15024 cosq34lt1 15026 logsqrt 15098 2logb9irrALT 15147 lgsdir2lem2 15186 gausslemma2dlem6 15224 lgsquadlem1 15234 lgsquadlem2 15235 lgsquad2lem2 15239 m1lgs 15242 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2lgsoddprmlem2 15263 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 ex-fl 15287 ex-ceil 15288 ex-exp 15289 ex-fac 15290 |
Copyright terms: Public domain | W3C validator |