| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9176 |
. 2
| |
| 2 | 1 | recni 8154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 |
| This theorem is referenced by: 2ex 9178 2cnd 9179 2m1e1 9224 3m1e2 9226 2p2e4 9233 times2 9235 2div2e1 9239 1p2e3 9241 3p3e6 9249 4p3e7 9251 5p3e8 9254 6p3e9 9257 2t1e2 9260 2t2e4 9261 3t3e9 9264 2t0e0 9266 4d2e2 9267 2cnne0 9316 1mhlfehlf 9325 8th4div3 9326 halfpm6th 9327 2mulicn 9329 2muliap0 9331 halfcl 9333 half0 9335 2halves 9336 halfaddsub 9341 div4p1lem1div2 9361 3halfnz 9540 zneo 9544 nneoor 9545 zeo 9548 7p3e10 9648 4t4e16 9672 6t3e18 9678 7t7e49 9687 8t5e40 9691 9t9e81 9702 decbin0 9713 decbin2 9714 halfthird 9716 fztpval 10275 fz0tp 10314 fz0to4untppr 10316 fzo0to3tp 10420 2tnp1ge0ge0 10516 fldiv4lem1div2 10522 expubnd 10813 sq2 10852 sq4e2t8 10854 cu2 10855 subsq2 10864 binom2sub 10870 binom3 10874 zesq 10875 fac2 10948 fac3 10949 faclbnd2 10959 bcn2 10981 4bc2eq6 10991 crre 11363 addcj 11397 imval2 11400 resqrexlemover 11516 resqrexlemcalc1 11520 resqrexlemnm 11524 resqrexlemcvg 11525 amgm2 11624 arisum 12004 arisum2 12005 geo2sum2 12021 geo2lim 12022 geoihalfsum 12028 efcllemp 12164 ege2le3 12177 tanval2ap 12219 tanval3ap 12220 efi4p 12223 efival 12238 sinadd 12242 cosadd 12243 sinmul 12250 cosmul 12251 cos2tsin 12257 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos1bnd 12265 cos2bnd 12266 cos01gt0 12269 sin02gt0 12270 sin4lt0 12273 cos12dec 12274 egt2lt3 12286 odd2np1lem 12378 odd2np1 12379 ltoddhalfle 12399 halfleoddlt 12400 opoe 12401 omoe 12402 opeo 12403 omeo 12404 nno 12412 nn0o 12413 flodddiv4 12442 bits0 12454 bitsfzolem 12460 0bits 12465 bitsinv1 12468 6gcd4e2 12511 3lcm2e6woprm 12603 6lcm4e12 12604 sqrt2irrlem 12678 oddpwdclemodd 12689 pythagtriplem1 12783 pythagtriplem12 12793 pythagtriplem14 12795 4sqlem11 12919 4sqlem12 12920 dec5dvds 12930 dec2nprm 12933 2exp5 12950 2exp6 12951 2exp7 12952 2exp8 12953 2exp11 12954 2exp16 12955 maxcncf 15283 mincncf 15284 coscn 15438 sinhalfpilem 15459 cospi 15468 ef2pi 15473 ef2kpi 15474 efper 15475 sinperlem 15476 sin2kpi 15479 cos2kpi 15480 sin2pim 15481 cos2pim 15482 ptolemy 15492 sincosq3sgn 15496 sincosq4sgn 15497 sinq12gt0 15498 cosq23lt0 15501 coseq00topi 15503 tangtx 15506 sincos4thpi 15508 sincos6thpi 15510 sincos3rdpi 15511 pigt3 15512 abssinper 15514 coskpi 15516 cosq34lt1 15518 logsqrt 15591 2logb9irrALT 15642 1sgm2ppw 15663 perfect1 15666 perfectlem1 15667 perfectlem2 15668 perfect 15669 lgsdir2lem2 15702 gausslemma2dlem6 15740 lgsquadlem1 15750 lgsquadlem2 15751 lgsquad2lem2 15755 m1lgs 15758 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 2lgsoddprmlem2 15779 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 ex-fl 16047 ex-ceil 16048 ex-exp 16049 ex-fac 16050 |
| Copyright terms: Public domain | W3C validator |