| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9141 |
. 2
| |
| 2 | 1 | recni 8119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-2 9130 |
| This theorem is referenced by: 2ex 9143 2cnd 9144 2m1e1 9189 3m1e2 9191 2p2e4 9198 times2 9200 2div2e1 9204 1p2e3 9206 3p3e6 9214 4p3e7 9216 5p3e8 9219 6p3e9 9222 2t1e2 9225 2t2e4 9226 3t3e9 9229 2t0e0 9231 4d2e2 9232 2cnne0 9281 1mhlfehlf 9290 8th4div3 9291 halfpm6th 9292 2mulicn 9294 2muliap0 9296 halfcl 9298 half0 9300 2halves 9301 halfaddsub 9306 div4p1lem1div2 9326 3halfnz 9505 zneo 9509 nneoor 9510 zeo 9513 7p3e10 9613 4t4e16 9637 6t3e18 9643 7t7e49 9652 8t5e40 9656 9t9e81 9667 decbin0 9678 decbin2 9679 halfthird 9681 fztpval 10240 fz0tp 10279 fz0to4untppr 10281 fzo0to3tp 10385 2tnp1ge0ge0 10481 fldiv4lem1div2 10487 expubnd 10778 sq2 10817 sq4e2t8 10819 cu2 10820 subsq2 10829 binom2sub 10835 binom3 10839 zesq 10840 fac2 10913 fac3 10914 faclbnd2 10924 bcn2 10946 4bc2eq6 10956 crre 11283 addcj 11317 imval2 11320 resqrexlemover 11436 resqrexlemcalc1 11440 resqrexlemnm 11444 resqrexlemcvg 11445 amgm2 11544 arisum 11924 arisum2 11925 geo2sum2 11941 geo2lim 11942 geoihalfsum 11948 efcllemp 12084 ege2le3 12097 tanval2ap 12139 tanval3ap 12140 efi4p 12143 efival 12158 sinadd 12162 cosadd 12163 sinmul 12170 cosmul 12171 cos2tsin 12177 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 cos1bnd 12185 cos2bnd 12186 cos01gt0 12189 sin02gt0 12190 sin4lt0 12193 cos12dec 12194 egt2lt3 12206 odd2np1lem 12298 odd2np1 12299 ltoddhalfle 12319 halfleoddlt 12320 opoe 12321 omoe 12322 opeo 12323 omeo 12324 nno 12332 nn0o 12333 flodddiv4 12362 bits0 12374 bitsfzolem 12380 0bits 12385 bitsinv1 12388 6gcd4e2 12431 3lcm2e6woprm 12523 6lcm4e12 12524 sqrt2irrlem 12598 oddpwdclemodd 12609 pythagtriplem1 12703 pythagtriplem12 12713 pythagtriplem14 12715 4sqlem11 12839 4sqlem12 12840 dec5dvds 12850 dec2nprm 12853 2exp5 12870 2exp6 12871 2exp7 12872 2exp8 12873 2exp11 12874 2exp16 12875 maxcncf 15202 mincncf 15203 coscn 15357 sinhalfpilem 15378 cospi 15387 ef2pi 15392 ef2kpi 15393 efper 15394 sinperlem 15395 sin2kpi 15398 cos2kpi 15399 sin2pim 15400 cos2pim 15401 ptolemy 15411 sincosq3sgn 15415 sincosq4sgn 15416 sinq12gt0 15417 cosq23lt0 15420 coseq00topi 15422 tangtx 15425 sincos4thpi 15427 sincos6thpi 15429 sincos3rdpi 15430 pigt3 15431 abssinper 15433 coskpi 15435 cosq34lt1 15437 logsqrt 15510 2logb9irrALT 15561 1sgm2ppw 15582 perfect1 15585 perfectlem1 15586 perfectlem2 15587 perfect 15588 lgsdir2lem2 15621 gausslemma2dlem6 15659 lgsquadlem1 15669 lgsquadlem2 15670 lgsquad2lem2 15674 m1lgs 15677 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 2lgsoddprmlem2 15698 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 ex-fl 15861 ex-ceil 15862 ex-exp 15863 ex-fac 15864 |
| Copyright terms: Public domain | W3C validator |