| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9105 |
. 2
| |
| 2 | 1 | recni 8083 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-2 9094 |
| This theorem is referenced by: 2ex 9107 2cnd 9108 2m1e1 9153 3m1e2 9155 2p2e4 9162 times2 9164 2div2e1 9168 1p2e3 9170 3p3e6 9178 4p3e7 9180 5p3e8 9183 6p3e9 9186 2t1e2 9189 2t2e4 9190 3t3e9 9193 2t0e0 9195 4d2e2 9196 2cnne0 9245 1mhlfehlf 9254 8th4div3 9255 halfpm6th 9256 2mulicn 9258 2muliap0 9260 halfcl 9262 half0 9264 2halves 9265 halfaddsub 9270 div4p1lem1div2 9290 3halfnz 9469 zneo 9473 nneoor 9474 zeo 9477 7p3e10 9577 4t4e16 9601 6t3e18 9607 7t7e49 9616 8t5e40 9620 9t9e81 9631 decbin0 9642 decbin2 9643 halfthird 9645 fztpval 10204 fz0tp 10243 fz0to4untppr 10245 fzo0to3tp 10346 2tnp1ge0ge0 10442 fldiv4lem1div2 10448 expubnd 10739 sq2 10778 sq4e2t8 10780 cu2 10781 subsq2 10790 binom2sub 10796 binom3 10800 zesq 10801 fac2 10874 fac3 10875 faclbnd2 10885 bcn2 10907 4bc2eq6 10917 crre 11139 addcj 11173 imval2 11176 resqrexlemover 11292 resqrexlemcalc1 11296 resqrexlemnm 11300 resqrexlemcvg 11301 amgm2 11400 arisum 11780 arisum2 11781 geo2sum2 11797 geo2lim 11798 geoihalfsum 11804 efcllemp 11940 ege2le3 11953 tanval2ap 11995 tanval3ap 11996 efi4p 11999 efival 12014 sinadd 12018 cosadd 12019 sinmul 12026 cosmul 12027 cos2tsin 12033 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 cos1bnd 12041 cos2bnd 12042 cos01gt0 12045 sin02gt0 12046 sin4lt0 12049 cos12dec 12050 egt2lt3 12062 odd2np1lem 12154 odd2np1 12155 ltoddhalfle 12175 halfleoddlt 12176 opoe 12177 omoe 12178 opeo 12179 omeo 12180 nno 12188 nn0o 12189 flodddiv4 12218 bits0 12230 bitsfzolem 12236 0bits 12241 bitsinv1 12244 6gcd4e2 12287 3lcm2e6woprm 12379 6lcm4e12 12380 sqrt2irrlem 12454 oddpwdclemodd 12465 pythagtriplem1 12559 pythagtriplem12 12569 pythagtriplem14 12571 4sqlem11 12695 4sqlem12 12696 dec5dvds 12706 dec2nprm 12709 2exp5 12726 2exp6 12727 2exp7 12728 2exp8 12729 2exp11 12730 2exp16 12731 maxcncf 15058 mincncf 15059 coscn 15213 sinhalfpilem 15234 cospi 15243 ef2pi 15248 ef2kpi 15249 efper 15250 sinperlem 15251 sin2kpi 15254 cos2kpi 15255 sin2pim 15256 cos2pim 15257 ptolemy 15267 sincosq3sgn 15271 sincosq4sgn 15272 sinq12gt0 15273 cosq23lt0 15276 coseq00topi 15278 tangtx 15281 sincos4thpi 15283 sincos6thpi 15285 sincos3rdpi 15286 pigt3 15287 abssinper 15289 coskpi 15291 cosq34lt1 15293 logsqrt 15366 2logb9irrALT 15417 1sgm2ppw 15438 perfect1 15441 perfectlem1 15442 perfectlem2 15443 perfect 15444 lgsdir2lem2 15477 gausslemma2dlem6 15515 lgsquadlem1 15525 lgsquadlem2 15526 lgsquad2lem2 15530 m1lgs 15533 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 2lgsoddprmlem2 15554 2lgsoddprmlem3c 15557 2lgsoddprmlem3d 15558 ex-fl 15623 ex-ceil 15624 ex-exp 15625 ex-fac 15626 |
| Copyright terms: Public domain | W3C validator |