![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version |
Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
2cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9052 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 8031 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-2 9041 |
This theorem is referenced by: 2ex 9054 2cnd 9055 2m1e1 9100 3m1e2 9102 2p2e4 9109 times2 9111 2div2e1 9114 1p2e3 9116 3p3e6 9124 4p3e7 9126 5p3e8 9129 6p3e9 9132 2t1e2 9135 2t2e4 9136 3t3e9 9139 2t0e0 9141 4d2e2 9142 2cnne0 9191 1mhlfehlf 9200 8th4div3 9201 halfpm6th 9202 2mulicn 9204 2muliap0 9206 halfcl 9208 half0 9210 2halves 9211 halfaddsub 9216 div4p1lem1div2 9236 3halfnz 9414 zneo 9418 nneoor 9419 zeo 9422 7p3e10 9522 4t4e16 9546 6t3e18 9552 7t7e49 9561 8t5e40 9565 9t9e81 9576 decbin0 9587 decbin2 9588 halfthird 9590 fztpval 10149 fz0tp 10188 fz0to4untppr 10190 fzo0to3tp 10286 2tnp1ge0ge0 10370 fldiv4lem1div2 10376 expubnd 10667 sq2 10706 sq4e2t8 10708 cu2 10709 subsq2 10718 binom2sub 10724 binom3 10728 zesq 10729 fac2 10802 fac3 10803 faclbnd2 10813 bcn2 10835 4bc2eq6 10845 crre 11001 addcj 11035 imval2 11038 resqrexlemover 11154 resqrexlemcalc1 11158 resqrexlemnm 11162 resqrexlemcvg 11163 amgm2 11262 arisum 11641 arisum2 11642 geo2sum2 11658 geo2lim 11659 geoihalfsum 11665 efcllemp 11801 ege2le3 11814 tanval2ap 11856 tanval3ap 11857 efi4p 11860 efival 11875 sinadd 11879 cosadd 11880 sinmul 11887 cosmul 11888 cos2tsin 11894 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos1bnd 11902 cos2bnd 11903 cos01gt0 11906 sin02gt0 11907 sin4lt0 11910 cos12dec 11911 egt2lt3 11923 odd2np1lem 12013 odd2np1 12014 ltoddhalfle 12034 halfleoddlt 12035 opoe 12036 omoe 12037 opeo 12038 omeo 12039 nno 12047 nn0o 12048 flodddiv4 12075 6gcd4e2 12132 3lcm2e6woprm 12224 6lcm4e12 12225 sqrt2irrlem 12299 oddpwdclemodd 12310 pythagtriplem1 12403 pythagtriplem12 12413 pythagtriplem14 12415 4sqlem11 12539 4sqlem12 12540 maxcncf 14769 mincncf 14770 coscn 14905 sinhalfpilem 14926 cospi 14935 ef2pi 14940 ef2kpi 14941 efper 14942 sinperlem 14943 sin2kpi 14946 cos2kpi 14947 sin2pim 14948 cos2pim 14949 ptolemy 14959 sincosq3sgn 14963 sincosq4sgn 14964 sinq12gt0 14965 cosq23lt0 14968 coseq00topi 14970 tangtx 14973 sincos4thpi 14975 sincos6thpi 14977 sincos3rdpi 14978 pigt3 14979 abssinper 14981 coskpi 14983 cosq34lt1 14985 logsqrt 15057 2logb9irrALT 15106 lgsdir2lem2 15145 gausslemma2dlem6 15183 lgsquadlem1 15191 m1lgs 15192 2lgsoddprmlem2 15194 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 ex-fl 15217 ex-ceil 15218 ex-exp 15219 ex-fac 15220 |
Copyright terms: Public domain | W3C validator |