| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | Unicode version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9106 |
. 2
| |
| 2 | 1 | recni 8084 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 |
| This theorem is referenced by: 2ex 9108 2cnd 9109 2m1e1 9154 3m1e2 9156 2p2e4 9163 times2 9165 2div2e1 9169 1p2e3 9171 3p3e6 9179 4p3e7 9181 5p3e8 9184 6p3e9 9187 2t1e2 9190 2t2e4 9191 3t3e9 9194 2t0e0 9196 4d2e2 9197 2cnne0 9246 1mhlfehlf 9255 8th4div3 9256 halfpm6th 9257 2mulicn 9259 2muliap0 9261 halfcl 9263 half0 9265 2halves 9266 halfaddsub 9271 div4p1lem1div2 9291 3halfnz 9470 zneo 9474 nneoor 9475 zeo 9478 7p3e10 9578 4t4e16 9602 6t3e18 9608 7t7e49 9617 8t5e40 9621 9t9e81 9632 decbin0 9643 decbin2 9644 halfthird 9646 fztpval 10205 fz0tp 10244 fz0to4untppr 10246 fzo0to3tp 10348 2tnp1ge0ge0 10444 fldiv4lem1div2 10450 expubnd 10741 sq2 10780 sq4e2t8 10782 cu2 10783 subsq2 10792 binom2sub 10798 binom3 10802 zesq 10803 fac2 10876 fac3 10877 faclbnd2 10887 bcn2 10909 4bc2eq6 10919 crre 11168 addcj 11202 imval2 11205 resqrexlemover 11321 resqrexlemcalc1 11325 resqrexlemnm 11329 resqrexlemcvg 11330 amgm2 11429 arisum 11809 arisum2 11810 geo2sum2 11826 geo2lim 11827 geoihalfsum 11833 efcllemp 11969 ege2le3 11982 tanval2ap 12024 tanval3ap 12025 efi4p 12028 efival 12043 sinadd 12047 cosadd 12048 sinmul 12055 cosmul 12056 cos2tsin 12062 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos1bnd 12070 cos2bnd 12071 cos01gt0 12074 sin02gt0 12075 sin4lt0 12078 cos12dec 12079 egt2lt3 12091 odd2np1lem 12183 odd2np1 12184 ltoddhalfle 12204 halfleoddlt 12205 opoe 12206 omoe 12207 opeo 12208 omeo 12209 nno 12217 nn0o 12218 flodddiv4 12247 bits0 12259 bitsfzolem 12265 0bits 12270 bitsinv1 12273 6gcd4e2 12316 3lcm2e6woprm 12408 6lcm4e12 12409 sqrt2irrlem 12483 oddpwdclemodd 12494 pythagtriplem1 12588 pythagtriplem12 12598 pythagtriplem14 12600 4sqlem11 12724 4sqlem12 12725 dec5dvds 12735 dec2nprm 12738 2exp5 12755 2exp6 12756 2exp7 12757 2exp8 12758 2exp11 12759 2exp16 12760 maxcncf 15087 mincncf 15088 coscn 15242 sinhalfpilem 15263 cospi 15272 ef2pi 15277 ef2kpi 15278 efper 15279 sinperlem 15280 sin2kpi 15283 cos2kpi 15284 sin2pim 15285 cos2pim 15286 ptolemy 15296 sincosq3sgn 15300 sincosq4sgn 15301 sinq12gt0 15302 cosq23lt0 15305 coseq00topi 15307 tangtx 15310 sincos4thpi 15312 sincos6thpi 15314 sincos3rdpi 15315 pigt3 15316 abssinper 15318 coskpi 15320 cosq34lt1 15322 logsqrt 15395 2logb9irrALT 15446 1sgm2ppw 15467 perfect1 15470 perfectlem1 15471 perfectlem2 15472 perfect 15473 lgsdir2lem2 15506 gausslemma2dlem6 15544 lgsquadlem1 15554 lgsquadlem2 15555 lgsquad2lem2 15559 m1lgs 15562 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 2lgsoddprmlem2 15583 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 ex-fl 15661 ex-ceil 15662 ex-exp 15663 ex-fac 15664 |
| Copyright terms: Public domain | W3C validator |