ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincn Unicode version

Theorem sincn 13330
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn  |-  sin  e.  ( CC -cn-> CC )

Proof of Theorem sincn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 11591 . 2  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2 eqid 2165 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
32subcncntop 13193 . . . . . . . . 9  |-  -  e.  ( ( ( MetOpen `  ( abs  o.  -  )
)  tX  ( MetOpen `  ( abs  o.  -  )
) )  Cn  ( MetOpen
`  ( abs  o.  -  ) ) )
43a1i 9 . . . . . . . 8  |-  ( T. 
->  -  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  tX  ( MetOpen `  ( abs  o. 
-  ) ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) ) )
5 efcn 13329 . . . . . . . . . 10  |-  exp  e.  ( CC -cn-> CC )
65a1i 9 . . . . . . . . 9  |-  ( T. 
->  exp  e.  ( CC
-cn-> CC ) )
7 ax-icn 7848 . . . . . . . . . 10  |-  _i  e.  CC
8 eqid 2165 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( _i  x.  x ) )  =  ( x  e.  CC  |->  ( _i  x.  x ) )
98mulc1cncf 13216 . . . . . . . . . 10  |-  ( _i  e.  CC  ->  (
x  e.  CC  |->  ( _i  x.  x ) )  e.  ( CC
-cn-> CC ) )
107, 9mp1i 10 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
116, 10cncfmpt1f 13224 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
12 negicn 8099 . . . . . . . . . 10  |-  -u _i  e.  CC
13 eqid 2165 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  x ) )  =  ( x  e.  CC  |->  ( -u _i  x.  x ) )
1413mulc1cncf 13216 . . . . . . . . . 10  |-  ( -u _i  e.  CC  ->  (
x  e.  CC  |->  (
-u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
1512, 14mp1i 10 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( -u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
166, 15cncfmpt1f 13224 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
172, 4, 11, 16cncfmpt2fcntop 13225 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC ) )
18 cncff 13204 . . . . . . 7  |-  ( ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
1917, 18syl 14 . . . . . 6  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
20 eqid 2165 . . . . . . 7  |-  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )
2120fmpt 5635 . . . . . 6  |-  ( A. x  e.  CC  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  <->  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
2219, 21sylibr 133 . . . . 5  |-  ( T. 
->  A. x  e.  CC  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
23 eqidd 2166 . . . . 5  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) )
24 eqidd 2166 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) ) )
25 oveq1 5849 . . . . 5  |-  ( y  =  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  ->  ( y  / 
( 2  x.  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2622, 23, 24, 25fmptcof 5652 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) ) )
27 2mulicn 9079 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
28 2muliap0 9081 . . . . . . 7  |-  ( 2  x.  _i ) #  0
29 eqid 2165 . . . . . . . 8  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )
3029divccncfap 13217 . . . . . . 7  |-  ( ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 )  ->  (
y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  e.  ( CC
-cn-> CC ) )
3127, 28, 30mp2an 423 . . . . . 6  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
3231a1i 9 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3317, 32cncfco 13218 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  e.  ( CC -cn-> CC ) )
3426, 33eqeltrrd 2244 . . 3  |-  ( T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3534mptru 1352 . 2  |-  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
361, 35eqeltri 2239 1  |-  sin  e.  ( CC -cn-> CC )
Colors of variables: wff set class
Syntax hints:   T. wtru 1344    e. wcel 2136   A.wral 2444   class class class wbr 3982    |-> cmpt 4043    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   _ici 7755    x. cmul 7758    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   abscabs 10939   expce 11583   sincsin 11585   MetOpencmopn 12625    Cn ccn 12825    tX ctx 12892   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator