ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efival Unicode version

Theorem efival 12158
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 8055 . . . . . 6  |-  _i  e.  CC
2 mulcl 8087 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 424 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efcl 12090 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
53, 4syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
6 negicn 8308 . . . . . 6  |-  -u _i  e.  CC
7 mulcl 8087 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
86, 7mpan 424 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
9 efcl 12090 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
108, 9syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
115, 10addcld 8127 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
125, 10subcld 8418 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2cn 9142 . . . . 5  |-  2  e.  CC
14 2ap0 9164 . . . . 5  |-  2 #  0
1513, 14pm3.2i 272 . . . 4  |-  ( 2  e.  CC  /\  2 #  0 )
16 divdirap 8805 . . . 4  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1715, 16mp3an3 1339 . . 3  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1811, 12, 17syl2anc 411 . 2  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2
) ) )
1910, 5pncan3d 8421 . . . . . 6  |-  ( A  e.  CC  ->  (
( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( exp `  (
_i  x.  A )
) )
2019oveq2d 5983 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
215, 10, 12addassd 8130 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( exp `  ( _i  x.  A ) )  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
2252timesd 9315 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
2320, 21, 223eqtr4d 2250 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( 2  x.  ( exp `  (
_i  x.  A )
) ) )
2423oveq1d 5982 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 ) )
25 divcanap3 8806 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2613, 14, 25mp3an23 1342 . . . 4  |-  ( ( exp `  ( _i  x.  A ) )  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
275, 26syl 14 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2824, 27eqtr2d 2241 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 ) )
29 cosval 12129 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
30 2mulicn 9294 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
31 2muliap0 9296 . . . . . . 7  |-  ( 2  x.  _i ) #  0
3230, 31pm3.2i 272 . . . . . 6  |-  ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 )
33 div12ap 8802 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 ) )  -> 
( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
341, 32, 33mp3an13 1341 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
3512, 34syl 14 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
36 sinval 12128 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
3736oveq2d 5983 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) ) )
38 divrecap 8796 . . . . . . 7  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
3913, 14, 38mp3an23 1342 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4012, 39syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
411mullidi 8110 . . . . . . . 8  |-  ( 1  x.  _i )  =  _i
4241oveq1i 5977 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( _i  /  (
2  x.  _i ) )
43 iap0 9295 . . . . . . . . . . 11  |-  _i #  0
441, 43dividapi 8853 . . . . . . . . . 10  |-  ( _i 
/  _i )  =  1
4544oveq2i 5978 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  /  2
)  x.  1 )
46 ax-1cn 8053 . . . . . . . . . 10  |-  1  e.  CC
4746, 13, 1, 1, 14, 43divmuldivapi 8880 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )
4845, 47eqtr3i 2230 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( ( 1  x.  _i )  /  (
2  x.  _i ) )
49 halfcn 9286 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
5049mulridi 8109 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
5148, 50eqtr3i 2230 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( 1  /  2
)
5242, 51eqtr3i 2230 . . . . . 6  |-  ( _i 
/  ( 2  x.  _i ) )  =  ( 1  /  2
)
5352oveq2i 5978 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) )
5440, 53eqtr4di 2258 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) ) )
5535, 37, 543eqtr4d 2250 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5629, 55oveq12d 5985 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  +  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
5718, 28, 563eqtr4d 2250 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961   _ici 7962    + caddc 7963    x. cmul 7965    - cmin 8278   -ucneg 8279   # cap 8689    / cdiv 8780   2c2 9122   expce 12068   sincsin 12070   cosccos 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077
This theorem is referenced by:  efmival  12159  efeul  12160  efieq  12161  sinadd  12162  cosadd  12163  absefi  12195  demoivre  12199  efhalfpi  15386  efipi  15388  ef2pi  15392  efimpi  15406
  Copyright terms: Public domain W3C validator