ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efival Unicode version

Theorem efival 11914
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 7991 . . . . . 6  |-  _i  e.  CC
2 mulcl 8023 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 424 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efcl 11846 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
53, 4syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
6 negicn 8244 . . . . . 6  |-  -u _i  e.  CC
7 mulcl 8023 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
86, 7mpan 424 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
9 efcl 11846 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
108, 9syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
115, 10addcld 8063 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
125, 10subcld 8354 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2cn 9078 . . . . 5  |-  2  e.  CC
14 2ap0 9100 . . . . 5  |-  2 #  0
1513, 14pm3.2i 272 . . . 4  |-  ( 2  e.  CC  /\  2 #  0 )
16 divdirap 8741 . . . 4  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1715, 16mp3an3 1337 . . 3  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1811, 12, 17syl2anc 411 . 2  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2
) ) )
1910, 5pncan3d 8357 . . . . . 6  |-  ( A  e.  CC  ->  (
( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( exp `  (
_i  x.  A )
) )
2019oveq2d 5941 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
215, 10, 12addassd 8066 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( exp `  ( _i  x.  A ) )  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
2252timesd 9251 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
2320, 21, 223eqtr4d 2239 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( 2  x.  ( exp `  (
_i  x.  A )
) ) )
2423oveq1d 5940 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 ) )
25 divcanap3 8742 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2613, 14, 25mp3an23 1340 . . . 4  |-  ( ( exp `  ( _i  x.  A ) )  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
275, 26syl 14 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2824, 27eqtr2d 2230 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 ) )
29 cosval 11885 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
30 2mulicn 9230 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
31 2muliap0 9232 . . . . . . 7  |-  ( 2  x.  _i ) #  0
3230, 31pm3.2i 272 . . . . . 6  |-  ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 )
33 div12ap 8738 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 ) )  -> 
( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
341, 32, 33mp3an13 1339 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
3512, 34syl 14 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
36 sinval 11884 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
3736oveq2d 5941 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) ) )
38 divrecap 8732 . . . . . . 7  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
3913, 14, 38mp3an23 1340 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4012, 39syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
411mullidi 8046 . . . . . . . 8  |-  ( 1  x.  _i )  =  _i
4241oveq1i 5935 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( _i  /  (
2  x.  _i ) )
43 iap0 9231 . . . . . . . . . . 11  |-  _i #  0
441, 43dividapi 8789 . . . . . . . . . 10  |-  ( _i 
/  _i )  =  1
4544oveq2i 5936 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  /  2
)  x.  1 )
46 ax-1cn 7989 . . . . . . . . . 10  |-  1  e.  CC
4746, 13, 1, 1, 14, 43divmuldivapi 8816 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )
4845, 47eqtr3i 2219 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( ( 1  x.  _i )  /  (
2  x.  _i ) )
49 halfcn 9222 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
5049mulridi 8045 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
5148, 50eqtr3i 2219 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( 1  /  2
)
5242, 51eqtr3i 2219 . . . . . 6  |-  ( _i 
/  ( 2  x.  _i ) )  =  ( 1  /  2
)
5352oveq2i 5936 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) )
5440, 53eqtr4di 2247 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) ) )
5535, 37, 543eqtr4d 2239 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5629, 55oveq12d 5943 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  +  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
5718, 28, 563eqtr4d 2239 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897   _ici 7898    + caddc 7899    x. cmul 7901    - cmin 8214   -ucneg 8215   # cap 8625    / cdiv 8716   2c2 9058   expce 11824   sincsin 11826   cosccos 11827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833
This theorem is referenced by:  efmival  11915  efeul  11916  efieq  11917  sinadd  11918  cosadd  11919  absefi  11951  demoivre  11955  efhalfpi  15119  efipi  15121  ef2pi  15125  efimpi  15139
  Copyright terms: Public domain W3C validator