ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinval Unicode version

Theorem sinval 11932
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
sinval  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )

Proof of Theorem sinval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-icn 8002 . . . . . . 7  |-  _i  e.  CC
21a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  _i  e.  CC )
3 id 19 . . . . . 6  |-  ( A  e.  CC  ->  A  e.  CC )
42, 3mulcld 8075 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
5 efcl 11894 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
64, 5syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
7 negicn 8255 . . . . . . 7  |-  -u _i  e.  CC
87a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  -u _i  e.  CC )
98, 3mulcld 8075 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
10 efcl 11894 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
119, 10syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
126, 11subcld 8365 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2mulicn 9241 . . . 4  |-  ( 2  x.  _i )  e.  CC
1413a1i 9 . . 3  |-  ( A  e.  CC  ->  (
2  x.  _i )  e.  CC )
15 2muliap0 9243 . . . 4  |-  ( 2  x.  _i ) #  0
1615a1i 9 . . 3  |-  ( A  e.  CC  ->  (
2  x.  _i ) #  0 )
1712, 14, 16divclapd 8845 . 2  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  e.  CC )
18 oveq2 5942 . . . . . 6  |-  ( x  =  A  ->  (
_i  x.  x )  =  ( _i  x.  A ) )
1918fveq2d 5574 . . . . 5  |-  ( x  =  A  ->  ( exp `  ( _i  x.  x ) )  =  ( exp `  (
_i  x.  A )
) )
20 oveq2 5942 . . . . . 6  |-  ( x  =  A  ->  ( -u _i  x.  x )  =  ( -u _i  x.  A ) )
2120fveq2d 5574 . . . . 5  |-  ( x  =  A  ->  ( exp `  ( -u _i  x.  x ) )  =  ( exp `  ( -u _i  x.  A ) ) )
2219, 21oveq12d 5952 . . . 4  |-  ( x  =  A  ->  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  =  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )
2322oveq1d 5949 . . 3  |-  ( x  =  A  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
24 df-sin 11880 . . 3  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2523, 24fvmptg 5649 . 2  |-  ( ( A  e.  CC  /\  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  e.  CC )  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
2617, 25mpdan 421 1  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905   0cc0 7907   _ici 7909    x. cmul 7912    - cmin 8225   -ucneg 8226   # cap 8636    / cdiv 8727   2c2 9069   expce 11872   sincsin 11874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-ico 9998  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880
This theorem is referenced by:  tanval2ap  11943  resinval  11945  sinneg  11956  efival  11962  sinadd  11966  sinper  15199
  Copyright terms: Public domain W3C validator