ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 Unicode version

Theorem 3ad2antl2 1163
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl2  |-  ( ( ( ps  /\  ph  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl1 1156 1  |-  ( ( ( ps  /\  ph  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  fcofo  5853  cocan1  5856  acexmid  5943  caovimo  6140  ordiso2  7137  mkvprop  7260  ltpopr  7708  ltsopr  7709  addcanprleml  7727  addcanprlemu  7728  aptiprlemu  7753  seq1g  10608  dvdsmodexp  12106  muldvds1  12127  lcmdvds  12401  cnpnei  14691
  Copyright terms: Public domain W3C validator