ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 Unicode version

Theorem 3ad2antl2 1162
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl2  |-  ( ( ( ps  /\  ph  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl1 1155 1  |-  ( ( ( ps  /\  ph  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  fcofo  5828  cocan1  5831  acexmid  5918  caovimo  6114  ordiso2  7096  mkvprop  7219  ltpopr  7657  ltsopr  7658  addcanprleml  7676  addcanprlemu  7677  aptiprlemu  7702  seq1g  10537  dvdsmodexp  11941  muldvds1  11962  lcmdvds  12220  cnpnei  14398
  Copyright terms: Public domain W3C validator