ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcofo Unicode version

Theorem fcofo 5752
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )

Proof of Theorem fcofo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 987 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A --> B )
2 ffvelrn 5618 . . . . 5  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( S `  y
)  e.  A )
323ad2antl2 1150 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( S `  y )  e.  A )
4 simpl3 992 . . . . . 6  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( F  o.  S )  =  (  _I  |`  B ) )
54fveq1d 5488 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( (  _I  |`  B ) `  y
) )
6 fvco3 5557 . . . . . 6  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( ( F  o.  S ) `  y
)  =  ( F `
 ( S `  y ) ) )
763ad2antl2 1150 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( F `  ( S `  y ) ) )
8 fvresi 5678 . . . . . 6  |-  ( y  e.  B  ->  (
(  _I  |`  B ) `
 y )  =  y )
98adantl 275 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
(  _I  |`  B ) `
 y )  =  y )
105, 7, 93eqtr3rd 2207 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  y  =  ( F `  ( S `  y ) ) )
11 fveq2 5486 . . . . . 6  |-  ( x  =  ( S `  y )  ->  ( F `  x )  =  ( F `  ( S `  y ) ) )
1211eqeq2d 2177 . . . . 5  |-  ( x  =  ( S `  y )  ->  (
y  =  ( F `
 x )  <->  y  =  ( F `  ( S `
 y ) ) ) )
1312rspcev 2830 . . . 4  |-  ( ( ( S `  y
)  e.  A  /\  y  =  ( F `  ( S `  y
) ) )  ->  E. x  e.  A  y  =  ( F `  x ) )
143, 10, 13syl2anc 409 . . 3  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  E. x  e.  A  y  =  ( F `  x ) )
1514ralrimiva 2539 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) )
16 dffo3 5632 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
171, 15, 16sylanbrc 414 1  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    _I cid 4266    |` cres 4606    o. ccom 4608   -->wf 5184   -onto->wfo 5186   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  fcof1o  5757
  Copyright terms: Public domain W3C validator