| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fcofo | Unicode version | ||
| Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fcofo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. 2
| |
| 2 | ffvelcdm 5767 |
. . . . 5
| |
| 3 | 2 | 3ad2antl2 1184 |
. . . 4
|
| 4 | simpl3 1026 |
. . . . . 6
| |
| 5 | 4 | fveq1d 5628 |
. . . . 5
|
| 6 | fvco3 5704 |
. . . . . 6
| |
| 7 | 6 | 3ad2antl2 1184 |
. . . . 5
|
| 8 | fvresi 5831 |
. . . . . 6
| |
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 5, 7, 9 | 3eqtr3rd 2271 |
. . . 4
|
| 11 | fveq2 5626 |
. . . . . 6
| |
| 12 | 11 | eqeq2d 2241 |
. . . . 5
|
| 13 | 12 | rspcev 2907 |
. . . 4
|
| 14 | 3, 10, 13 | syl2anc 411 |
. . 3
|
| 15 | 14 | ralrimiva 2603 |
. 2
|
| 16 | dffo3 5781 |
. 2
| |
| 17 | 1, 15, 16 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 |
| This theorem is referenced by: fcof1o 5912 |
| Copyright terms: Public domain | W3C validator |