ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcofo Unicode version

Theorem fcofo 5827
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )

Proof of Theorem fcofo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A --> B )
2 ffvelcdm 5691 . . . . 5  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( S `  y
)  e.  A )
323ad2antl2 1162 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( S `  y )  e.  A )
4 simpl3 1004 . . . . . 6  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( F  o.  S )  =  (  _I  |`  B ) )
54fveq1d 5556 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( (  _I  |`  B ) `  y
) )
6 fvco3 5628 . . . . . 6  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( ( F  o.  S ) `  y
)  =  ( F `
 ( S `  y ) ) )
763ad2antl2 1162 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( F `  ( S `  y ) ) )
8 fvresi 5751 . . . . . 6  |-  ( y  e.  B  ->  (
(  _I  |`  B ) `
 y )  =  y )
98adantl 277 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
(  _I  |`  B ) `
 y )  =  y )
105, 7, 93eqtr3rd 2235 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  y  =  ( F `  ( S `  y ) ) )
11 fveq2 5554 . . . . . 6  |-  ( x  =  ( S `  y )  ->  ( F `  x )  =  ( F `  ( S `  y ) ) )
1211eqeq2d 2205 . . . . 5  |-  ( x  =  ( S `  y )  ->  (
y  =  ( F `
 x )  <->  y  =  ( F `  ( S `
 y ) ) ) )
1312rspcev 2864 . . . 4  |-  ( ( ( S `  y
)  e.  A  /\  y  =  ( F `  ( S `  y
) ) )  ->  E. x  e.  A  y  =  ( F `  x ) )
143, 10, 13syl2anc 411 . . 3  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  E. x  e.  A  y  =  ( F `  x ) )
1514ralrimiva 2567 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) )
16 dffo3 5705 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
171, 15, 16sylanbrc 417 1  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    _I cid 4319    |` cres 4661    o. ccom 4663   -->wf 5250   -onto->wfo 5252   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262
This theorem is referenced by:  fcof1o  5832
  Copyright terms: Public domain W3C validator