ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcofo Unicode version

Theorem fcofo 5693
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )

Proof of Theorem fcofo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A --> B )
2 ffvelrn 5561 . . . . 5  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( S `  y
)  e.  A )
323ad2antl2 1145 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( S `  y )  e.  A )
4 simpl3 987 . . . . . 6  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  ( F  o.  S )  =  (  _I  |`  B ) )
54fveq1d 5431 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( (  _I  |`  B ) `  y
) )
6 fvco3 5500 . . . . . 6  |-  ( ( S : B --> A  /\  y  e.  B )  ->  ( ( F  o.  S ) `  y
)  =  ( F `
 ( S `  y ) ) )
763ad2antl2 1145 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
( F  o.  S
) `  y )  =  ( F `  ( S `  y ) ) )
8 fvresi 5621 . . . . . 6  |-  ( y  e.  B  ->  (
(  _I  |`  B ) `
 y )  =  y )
98adantl 275 . . . . 5  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  (
(  _I  |`  B ) `
 y )  =  y )
105, 7, 93eqtr3rd 2182 . . . 4  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  y  =  ( F `  ( S `  y ) ) )
11 fveq2 5429 . . . . . 6  |-  ( x  =  ( S `  y )  ->  ( F `  x )  =  ( F `  ( S `  y ) ) )
1211eqeq2d 2152 . . . . 5  |-  ( x  =  ( S `  y )  ->  (
y  =  ( F `
 x )  <->  y  =  ( F `  ( S `
 y ) ) ) )
1312rspcev 2793 . . . 4  |-  ( ( ( S `  y
)  e.  A  /\  y  =  ( F `  ( S `  y
) ) )  ->  E. x  e.  A  y  =  ( F `  x ) )
143, 10, 13syl2anc 409 . . 3  |-  ( ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S )  =  (  _I  |`  B )
)  /\  y  e.  B )  ->  E. x  e.  A  y  =  ( F `  x ) )
1514ralrimiva 2508 . 2  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) )
16 dffo3 5575 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
171, 15, 16sylanbrc 414 1  |-  ( ( F : A --> B  /\  S : B --> A  /\  ( F  o.  S
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    _I cid 4218    |` cres 4549    o. ccom 4551   -->wf 5127   -onto->wfo 5129   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139
This theorem is referenced by:  fcof1o  5698
  Copyright terms: Public domain W3C validator