ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprleml Unicode version

Theorem addcanprleml 7604
Description: Lemma for addcanprg 7606. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprleml  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )

Proof of Theorem addcanprleml
Dummy variables  f  g  h  r  s  t  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7465 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnmaddl 7480 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
31, 2sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
433ad2antl2 1160 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
54adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w )  e.  ( 1st `  B ) )
6 simprl 529 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  w  e.  Q. )
7 halfnqq 7400 . . . . . 6  |-  ( w  e.  Q.  ->  E. t  e.  Q.  ( t  +Q  t )  =  w )
86, 7syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  E. t  e.  Q.  ( t  +Q  t
)  =  w )
9 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. ) )
109adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
1110simp1d 1009 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  A  e.  P. )
12 prop 7465 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1311, 12syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 simprl 529 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  t  e.  Q. )
15 prarloc2 7494 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  A ) ( u  +Q  t
)  e.  ( 2nd `  A ) )
1613, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
179ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
1817simp1d 1009 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  A  e.  P. )
1917simp2d 1010 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  B  e.  P. )
20 addclpr 7527 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2118, 19, 20syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  +P.  B )  e. 
P. )
22 prop 7465 . . . . . . . . . 10  |-  ( ( A  +P.  B )  e.  P.  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2321, 22syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2418, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
25 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  ( 1st `  A
) )
26 elprnql 7471 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
2724, 25, 26syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  Q. )
2819, 1syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
29 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  v  e.  ( 1st `  B ) )
3029ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  ( 1st `  B
) )
31 elprnql 7471 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  v  e.  ( 1st `  B ) )  -> 
v  e.  Q. )
3228, 30, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
33 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  w  e.  Q. )
3433adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  w  e.  Q. )
35 addclnq 7365 . . . . . . . . . . 11  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  +Q  w
)  e.  Q. )
3632, 34, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
v  +Q  w )  e.  Q. )
37 addclnq 7365 . . . . . . . . . 10  |-  ( ( u  e.  Q.  /\  ( v  +Q  w
)  e.  Q. )  ->  ( u  +Q  (
v  +Q  w ) )  e.  Q. )
3827, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  Q. )
39 prdisj 7482 . . . . . . . . 9  |-  ( (
<. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P.  /\  (
u  +Q  ( v  +Q  w ) )  e.  Q. )  ->  -.  ( ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4023, 38, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4118adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  A  e.  P. )
4219adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  B  e.  P. )
43 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  u  e.  ( 1st `  A
) )
44 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  (
v  +Q  w )  e.  ( 1st `  B
) )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
v  +Q  w )  e.  ( 1st `  B
) )
46 df-iplp 7458 . . . . . . . . . . . 12  |-  +P.  =  ( r  e.  P. ,  s  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  r )  /\  h  e.  ( 1st `  s
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  r )  /\  h  e.  ( 2nd `  s
)  /\  f  =  ( g  +Q  h
) ) } >. )
47 addclnq 7365 . . . . . . . . . . . 12  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
4846, 47genpprecll 7504 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( u  e.  ( 1st `  A
)  /\  ( v  +Q  w )  e.  ( 1st `  B ) )  ->  ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) ) ) )
4948imp 124 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( u  e.  ( 1st `  A )  /\  ( v  +Q  w )  e.  ( 1st `  B ) ) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B ) ) )
5041, 42, 43, 45, 49syl22anc 1239 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B ) ) )
5127adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  u  e.  Q. )
5214ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  t  e.  Q. )
5332adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  v  e.  Q. )
54 addcomnqg 7371 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
5554adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
56 addassnqg 7372 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
5756adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( (
f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) ) )
58 addclnq 7365 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
5958adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  e.  Q. )
6051, 52, 53, 55, 57, 52, 59caov4d 6053 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  =  ( ( u  +Q  v )  +Q  ( t  +Q  t
) ) )
61 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  (
t  +Q  t )  =  w )
6261ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
t  +Q  t )  =  w )
6362oveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  v
)  +Q  ( t  +Q  t ) )  =  ( ( u  +Q  v )  +Q  w ) )
6433ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  w  e.  Q. )
65 addassnqg 7372 . . . . . . . . . . . . 13  |-  ( ( u  e.  Q.  /\  v  e.  Q.  /\  w  e.  Q. )  ->  (
( u  +Q  v
)  +Q  w )  =  ( u  +Q  ( v  +Q  w
) ) )
6651, 53, 64, 65syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  v
)  +Q  w )  =  ( u  +Q  ( v  +Q  w
) ) )
6760, 63, 663eqtrd 2214 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  =  ( u  +Q  ( v  +Q  w
) ) )
68 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  t )  e.  ( 2nd `  A
) )
69 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
v  +Q  t )  e.  ( 2nd `  C
) )
7017simp3d 1011 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  C  e.  P. )
7170adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  C  e.  P. )
7246, 47genppreclu 7505 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( ( u  +Q  t )  e.  ( 2nd `  A
)  /\  ( v  +Q  t )  e.  ( 2nd `  C ) )  ->  ( (
u  +Q  t )  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
7341, 71, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( ( u  +Q  t )  e.  ( 2nd `  A )  /\  ( v  +Q  t )  e.  ( 2nd `  C ) )  ->  ( (
u  +Q  t )  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
7468, 69, 73mp2and 433 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) )
7567, 74eqeltrrd 2255 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  C ) ) )
76 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( A  +P.  B )  =  ( A  +P.  C ) )
7776ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  ( A  +P.  B )  =  ( A  +P.  C
) )
7877ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  ( A  +P.  B )  =  ( A  +P.  C
) )
79 fveq2 5511 . . . . . . . . . . . 12  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( 2nd `  ( A  +P.  B
) )  =  ( 2nd `  ( A  +P.  C ) ) )
8079eleq2d 2247 . . . . . . . . . . 11  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) )  <-> 
( u  +Q  (
v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  C
) ) ) )
8178, 80syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  (
v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B
) )  <->  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
8275, 81mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) ) )
8350, 82jca 306 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  (
v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B
) )  /\  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
8440, 83mtand 665 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( v  +Q  t
)  e.  ( 2nd `  C ) )
85 prop 7465 . . . . . . . . 9  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
8670, 85syl 14 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
87 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  t  e.  Q. )
88 ltaddnq 7397 . . . . . . . . 9  |-  ( ( v  e.  Q.  /\  t  e.  Q. )  ->  v  <Q  ( v  +Q  t ) )
8932, 87, 88syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  <Q  ( v  +Q  t
) )
90 prloc 7481 . . . . . . . 8  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  v  <Q  ( v  +Q  t ) )  -> 
( v  e.  ( 1st `  C )  \/  ( v  +Q  t )  e.  ( 2nd `  C ) ) )
9186, 89, 90syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
v  e.  ( 1st `  C )  \/  (
v  +Q  t )  e.  ( 2nd `  C
) ) )
9284, 91ecased 1349 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  ( 1st `  C
) )
9316, 92rexlimddv 2599 . . . . 5  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  v  e.  ( 1st `  C
) )
948, 93rexlimddv 2599 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  v  e.  ( 1st `  C ) )
955, 94rexlimddv 2599 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  ->  v  e.  ( 1st `  C ) )
9695ex 115 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( v  e.  ( 1st `  B
)  ->  v  e.  ( 1st `  C ) ) )
9796ssrdv 3161 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456    C_ wss 3129   <.cop 3594   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1stc1st 6133   2ndc2nd 6134   Q.cnq 7270    +Q cplq 7272    <Q cltq 7275   P.cnp 7281    +P. cpp 7283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458
This theorem is referenced by:  addcanprg  7606
  Copyright terms: Public domain W3C validator