ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprleml Unicode version

Theorem addcanprleml 7747
Description: Lemma for addcanprg 7749. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprleml  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )

Proof of Theorem addcanprleml
Dummy variables  f  g  h  r  s  t  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7608 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnmaddl 7623 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
31, 2sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
433ad2antl2 1163 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w
)  e.  ( 1st `  B ) )
54adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  ->  E. w  e.  Q.  ( v  +Q  w )  e.  ( 1st `  B ) )
6 simprl 529 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  w  e.  Q. )
7 halfnqq 7543 . . . . . 6  |-  ( w  e.  Q.  ->  E. t  e.  Q.  ( t  +Q  t )  =  w )
86, 7syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  E. t  e.  Q.  ( t  +Q  t
)  =  w )
9 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. ) )
109adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
1110simp1d 1012 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  A  e.  P. )
12 prop 7608 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1311, 12syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 simprl 529 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  t  e.  Q. )
15 prarloc2 7637 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  A ) ( u  +Q  t
)  e.  ( 2nd `  A ) )
1613, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
179ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
1817simp1d 1012 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  A  e.  P. )
1917simp2d 1013 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  B  e.  P. )
20 addclpr 7670 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2118, 19, 20syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  +P.  B )  e. 
P. )
22 prop 7608 . . . . . . . . . 10  |-  ( ( A  +P.  B )  e.  P.  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2321, 22syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2418, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
25 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  ( 1st `  A
) )
26 elprnql 7614 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
2724, 25, 26syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  Q. )
2819, 1syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
29 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  v  e.  ( 1st `  B ) )
3029ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  ( 1st `  B
) )
31 elprnql 7614 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  v  e.  ( 1st `  B ) )  -> 
v  e.  Q. )
3228, 30, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
33 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  w  e.  Q. )
3433adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  w  e.  Q. )
35 addclnq 7508 . . . . . . . . . . 11  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  +Q  w
)  e.  Q. )
3632, 34, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
v  +Q  w )  e.  Q. )
37 addclnq 7508 . . . . . . . . . 10  |-  ( ( u  e.  Q.  /\  ( v  +Q  w
)  e.  Q. )  ->  ( u  +Q  (
v  +Q  w ) )  e.  Q. )
3827, 36, 37syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  Q. )
39 prdisj 7625 . . . . . . . . 9  |-  ( (
<. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P.  /\  (
u  +Q  ( v  +Q  w ) )  e.  Q. )  ->  -.  ( ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4023, 38, 39syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4118adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  A  e.  P. )
4219adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  B  e.  P. )
43 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  u  e.  ( 1st `  A
) )
44 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  (
v  +Q  w )  e.  ( 1st `  B
) )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
v  +Q  w )  e.  ( 1st `  B
) )
46 df-iplp 7601 . . . . . . . . . . . 12  |-  +P.  =  ( r  e.  P. ,  s  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  r )  /\  h  e.  ( 1st `  s
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  r )  /\  h  e.  ( 2nd `  s
)  /\  f  =  ( g  +Q  h
) ) } >. )
47 addclnq 7508 . . . . . . . . . . . 12  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
4846, 47genpprecll 7647 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( u  e.  ( 1st `  A
)  /\  ( v  +Q  w )  e.  ( 1st `  B ) )  ->  ( u  +Q  ( v  +Q  w
) )  e.  ( 1st `  ( A  +P.  B ) ) ) )
4948imp 124 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( u  e.  ( 1st `  A )  /\  ( v  +Q  w )  e.  ( 1st `  B ) ) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B ) ) )
5041, 42, 43, 45, 49syl22anc 1251 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B ) ) )
5127adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  u  e.  Q. )
5214ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  t  e.  Q. )
5332adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  v  e.  Q. )
54 addcomnqg 7514 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
5554adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
56 addassnqg 7515 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
5756adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( (
f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) ) )
58 addclnq 7508 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  e.  Q. )
5958adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  /\  (
u  e.  ( 1st `  A )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  /\  ( v  +Q  t
)  e.  ( 2nd `  C ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  e.  Q. )
6051, 52, 53, 55, 57, 52, 59caov4d 6144 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  =  ( ( u  +Q  v )  +Q  ( t  +Q  t
) ) )
61 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  (
t  +Q  t )  =  w )
6261ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
t  +Q  t )  =  w )
6362oveq2d 5973 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  v
)  +Q  ( t  +Q  t ) )  =  ( ( u  +Q  v )  +Q  w ) )
6433ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  w  e.  Q. )
65 addassnqg 7515 . . . . . . . . . . . . 13  |-  ( ( u  e.  Q.  /\  v  e.  Q.  /\  w  e.  Q. )  ->  (
( u  +Q  v
)  +Q  w )  =  ( u  +Q  ( v  +Q  w
) ) )
6651, 53, 64, 65syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  v
)  +Q  w )  =  ( u  +Q  ( v  +Q  w
) ) )
6760, 63, 663eqtrd 2243 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  =  ( u  +Q  ( v  +Q  w
) ) )
68 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  t )  e.  ( 2nd `  A
) )
69 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
v  +Q  t )  e.  ( 2nd `  C
) )
7017simp3d 1014 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  C  e.  P. )
7170adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  C  e.  P. )
7246, 47genppreclu 7648 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( ( u  +Q  t )  e.  ( 2nd `  A
)  /\  ( v  +Q  t )  e.  ( 2nd `  C ) )  ->  ( (
u  +Q  t )  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
7341, 71, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( ( u  +Q  t )  e.  ( 2nd `  A )  /\  ( v  +Q  t )  e.  ( 2nd `  C ) )  ->  ( (
u  +Q  t )  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
7468, 69, 73mp2and 433 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  t
)  +Q  ( v  +Q  t ) )  e.  ( 2nd `  ( A  +P.  C ) ) )
7567, 74eqeltrrd 2284 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  C ) ) )
76 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( A  +P.  B )  =  ( A  +P.  C ) )
7776ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  ( A  +P.  B )  =  ( A  +P.  C
) )
7877ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  ( A  +P.  B )  =  ( A  +P.  C
) )
79 fveq2 5589 . . . . . . . . . . . 12  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( 2nd `  ( A  +P.  B
) )  =  ( 2nd `  ( A  +P.  C ) ) )
8079eleq2d 2276 . . . . . . . . . . 11  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) )  <-> 
( u  +Q  (
v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  C
) ) ) )
8178, 80syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  (
v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B
) )  <->  ( u  +Q  ( v  +Q  w
) )  e.  ( 2nd `  ( A  +P.  C ) ) ) )
8275, 81mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) ) )
8350, 82jca 306 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
v  +Q  t )  e.  ( 2nd `  C
) )  ->  (
( u  +Q  (
v  +Q  w ) )  e.  ( 1st `  ( A  +P.  B
) )  /\  (
u  +Q  ( v  +Q  w ) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
8440, 83mtand 667 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( v  +Q  t
)  e.  ( 2nd `  C ) )
85 prop 7608 . . . . . . . . 9  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
8670, 85syl 14 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
87 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  t  e.  Q. )
88 ltaddnq 7540 . . . . . . . . 9  |-  ( ( v  e.  Q.  /\  t  e.  Q. )  ->  v  <Q  ( v  +Q  t ) )
8932, 87, 88syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  <Q  ( v  +Q  t
) )
90 prloc 7624 . . . . . . . 8  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  v  <Q  ( v  +Q  t ) )  -> 
( v  e.  ( 1st `  C )  \/  ( v  +Q  t )  e.  ( 2nd `  C ) ) )
9186, 89, 90syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
v  e.  ( 1st `  C )  \/  (
v  +Q  t )  e.  ( 2nd `  C
) ) )
9284, 91ecased 1362 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  /\  ( w  e.  Q.  /\  (
v  +Q  w )  e.  ( 1st `  B
) ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  ( 1st `  C
) )
9316, 92rexlimddv 2629 . . . . 5  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  v  e.  ( 1st `  C
) )
948, 93rexlimddv 2629 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 1st `  B
) )  /\  (
w  e.  Q.  /\  ( v  +Q  w
)  e.  ( 1st `  B ) ) )  ->  v  e.  ( 1st `  C ) )
955, 94rexlimddv 2629 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 1st `  B ) )  ->  v  e.  ( 1st `  C ) )
9695ex 115 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( v  e.  ( 1st `  B
)  ->  v  e.  ( 1st `  C ) ) )
9796ssrdv 3203 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 1st `  B
)  C_  ( 1st `  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486    C_ wss 3170   <.cop 3641   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   1stc1st 6237   2ndc2nd 6238   Q.cnq 7413    +Q cplq 7415    <Q cltq 7418   P.cnp 7424    +P. cpp 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-iplp 7601
This theorem is referenced by:  addcanprg  7749
  Copyright terms: Public domain W3C validator