ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 Unicode version

Theorem cocan1 5755
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )

Proof of Theorem cocan1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvco3 5557 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
213ad2antl2 1150 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
3 fvco3 5557 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( ( F  o.  K ) `  x
)  =  ( F `
 ( K `  x ) ) )
433ad2antl3 1151 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  K
) `  x )  =  ( F `  ( K `  x ) ) )
52, 4eqeq12d 2180 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( F `  ( H `  x
) )  =  ( F `  ( K `
 x ) ) ) )
6 simpl1 990 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  F : B -1-1-> C )
7 ffvelrn 5618 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
873ad2antl2 1150 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( H `  x )  e.  B )
9 ffvelrn 5618 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( K `  x
)  e.  B )
1093ad2antl3 1151 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( K `  x )  e.  B )
11 f1fveq 5740 . . . . 5  |-  ( ( F : B -1-1-> C  /\  ( ( H `  x )  e.  B  /\  ( K `  x
)  e.  B ) )  ->  ( ( F `  ( H `  x ) )  =  ( F `  ( K `  x )
)  <->  ( H `  x )  =  ( K `  x ) ) )
126, 8, 10, 11syl12anc 1226 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F `  ( H `  x )
)  =  ( F `
 ( K `  x ) )  <->  ( H `  x )  =  ( K `  x ) ) )
135, 12bitrd 187 . . 3  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( H `  x )  =  ( K `  x ) ) )
1413ralbidva 2462 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( A. x  e.  A  ( ( F  o.  H ) `  x )  =  ( ( F  o.  K
) `  x )  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
15 f1f 5393 . . . . . 6  |-  ( F : B -1-1-> C  ->  F : B --> C )
16153ad2ant1 1008 . . . . 5  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F : B --> C )
17 ffn 5337 . . . . 5  |-  ( F : B --> C  ->  F  Fn  B )
1816, 17syl 14 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F  Fn  B
)
19 simp2 988 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H : A --> B )
20 fnfco 5362 . . . 4  |-  ( ( F  Fn  B  /\  H : A --> B )  ->  ( F  o.  H )  Fn  A
)
2118, 19, 20syl2anc 409 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  H )  Fn  A
)
22 simp3 989 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K : A --> B )
23 fnfco 5362 . . . 4  |-  ( ( F  Fn  B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
2418, 22, 23syl2anc 409 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
25 eqfnfv 5583 . . 3  |-  ( ( ( F  o.  H
)  Fn  A  /\  ( F  o.  K
)  Fn  A )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
2621, 24, 25syl2anc 409 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
27 ffn 5337 . . . 4  |-  ( H : A --> B  ->  H  Fn  A )
2819, 27syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H  Fn  A
)
29 ffn 5337 . . . 4  |-  ( K : A --> B  ->  K  Fn  A )
3022, 29syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K  Fn  A
)
31 eqfnfv 5583 . . 3  |-  ( ( H  Fn  A  /\  K  Fn  A )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3228, 30, 31syl2anc 409 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3314, 26, 323bitr4d 219 1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444    o. ccom 4608    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196
This theorem is referenced by:  mapen  6812  hashfacen  10749
  Copyright terms: Public domain W3C validator