ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 Unicode version

Theorem cocan1 5801
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )

Proof of Theorem cocan1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvco3 5600 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
213ad2antl2 1161 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
3 fvco3 5600 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( ( F  o.  K ) `  x
)  =  ( F `
 ( K `  x ) ) )
433ad2antl3 1162 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  K
) `  x )  =  ( F `  ( K `  x ) ) )
52, 4eqeq12d 2202 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( F `  ( H `  x
) )  =  ( F `  ( K `
 x ) ) ) )
6 simpl1 1001 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  F : B -1-1-> C )
7 ffvelcdm 5662 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
873ad2antl2 1161 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( H `  x )  e.  B )
9 ffvelcdm 5662 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( K `  x
)  e.  B )
1093ad2antl3 1162 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( K `  x )  e.  B )
11 f1fveq 5786 . . . . 5  |-  ( ( F : B -1-1-> C  /\  ( ( H `  x )  e.  B  /\  ( K `  x
)  e.  B ) )  ->  ( ( F `  ( H `  x ) )  =  ( F `  ( K `  x )
)  <->  ( H `  x )  =  ( K `  x ) ) )
126, 8, 10, 11syl12anc 1246 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F `  ( H `  x )
)  =  ( F `
 ( K `  x ) )  <->  ( H `  x )  =  ( K `  x ) ) )
135, 12bitrd 188 . . 3  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( H `  x )  =  ( K `  x ) ) )
1413ralbidva 2483 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( A. x  e.  A  ( ( F  o.  H ) `  x )  =  ( ( F  o.  K
) `  x )  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
15 f1f 5433 . . . . . 6  |-  ( F : B -1-1-> C  ->  F : B --> C )
16153ad2ant1 1019 . . . . 5  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F : B --> C )
17 ffn 5377 . . . . 5  |-  ( F : B --> C  ->  F  Fn  B )
1816, 17syl 14 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F  Fn  B
)
19 simp2 999 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H : A --> B )
20 fnfco 5402 . . . 4  |-  ( ( F  Fn  B  /\  H : A --> B )  ->  ( F  o.  H )  Fn  A
)
2118, 19, 20syl2anc 411 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  H )  Fn  A
)
22 simp3 1000 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K : A --> B )
23 fnfco 5402 . . . 4  |-  ( ( F  Fn  B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
2418, 22, 23syl2anc 411 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
25 eqfnfv 5626 . . 3  |-  ( ( ( F  o.  H
)  Fn  A  /\  ( F  o.  K
)  Fn  A )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
2621, 24, 25syl2anc 411 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
27 ffn 5377 . . . 4  |-  ( H : A --> B  ->  H  Fn  A )
2819, 27syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H  Fn  A
)
29 ffn 5377 . . . 4  |-  ( K : A --> B  ->  K  Fn  A )
3022, 29syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K  Fn  A
)
31 eqfnfv 5626 . . 3  |-  ( ( H  Fn  A  /\  K  Fn  A )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3228, 30, 31syl2anc 411 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3314, 26, 323bitr4d 220 1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465    o. ccom 4642    Fn wfn 5223   -->wf 5224   -1-1->wf1 5225   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fv 5236
This theorem is referenced by:  mapen  6860  hashfacen  10830
  Copyright terms: Public domain W3C validator