ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 Unicode version

Theorem cocan1 5782
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )

Proof of Theorem cocan1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvco3 5583 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
213ad2antl2 1160 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
3 fvco3 5583 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( ( F  o.  K ) `  x
)  =  ( F `
 ( K `  x ) ) )
433ad2antl3 1161 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  K
) `  x )  =  ( F `  ( K `  x ) ) )
52, 4eqeq12d 2192 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( F `  ( H `  x
) )  =  ( F `  ( K `
 x ) ) ) )
6 simpl1 1000 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  F : B -1-1-> C )
7 ffvelcdm 5645 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
873ad2antl2 1160 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( H `  x )  e.  B )
9 ffvelcdm 5645 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( K `  x
)  e.  B )
1093ad2antl3 1161 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( K `  x )  e.  B )
11 f1fveq 5767 . . . . 5  |-  ( ( F : B -1-1-> C  /\  ( ( H `  x )  e.  B  /\  ( K `  x
)  e.  B ) )  ->  ( ( F `  ( H `  x ) )  =  ( F `  ( K `  x )
)  <->  ( H `  x )  =  ( K `  x ) ) )
126, 8, 10, 11syl12anc 1236 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F `  ( H `  x )
)  =  ( F `
 ( K `  x ) )  <->  ( H `  x )  =  ( K `  x ) ) )
135, 12bitrd 188 . . 3  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( H `  x )  =  ( K `  x ) ) )
1413ralbidva 2473 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( A. x  e.  A  ( ( F  o.  H ) `  x )  =  ( ( F  o.  K
) `  x )  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
15 f1f 5417 . . . . . 6  |-  ( F : B -1-1-> C  ->  F : B --> C )
16153ad2ant1 1018 . . . . 5  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F : B --> C )
17 ffn 5361 . . . . 5  |-  ( F : B --> C  ->  F  Fn  B )
1816, 17syl 14 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F  Fn  B
)
19 simp2 998 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H : A --> B )
20 fnfco 5386 . . . 4  |-  ( ( F  Fn  B  /\  H : A --> B )  ->  ( F  o.  H )  Fn  A
)
2118, 19, 20syl2anc 411 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  H )  Fn  A
)
22 simp3 999 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K : A --> B )
23 fnfco 5386 . . . 4  |-  ( ( F  Fn  B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
2418, 22, 23syl2anc 411 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
25 eqfnfv 5609 . . 3  |-  ( ( ( F  o.  H
)  Fn  A  /\  ( F  o.  K
)  Fn  A )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
2621, 24, 25syl2anc 411 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
27 ffn 5361 . . . 4  |-  ( H : A --> B  ->  H  Fn  A )
2819, 27syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H  Fn  A
)
29 ffn 5361 . . . 4  |-  ( K : A --> B  ->  K  Fn  A )
3022, 29syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K  Fn  A
)
31 eqfnfv 5609 . . 3  |-  ( ( H  Fn  A  /\  K  Fn  A )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3228, 30, 31syl2anc 411 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3314, 26, 323bitr4d 220 1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    o. ccom 4627    Fn wfn 5207   -->wf 5208   -1-1->wf1 5209   ` cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fv 5220
This theorem is referenced by:  mapen  6840  hashfacen  10800
  Copyright terms: Public domain W3C validator