ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftuz Unicode version

Theorem shftuz 10589
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2425 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
) }
2 simp2 982 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  CC )
3 zcn 9059 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  CC )
433ad2ant1 1002 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  A  e.  CC )
52, 4npcand 8077 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  =  x )
6 eluzadd 9354 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  ( ZZ>= `  B )  /\  A  e.  ZZ )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
76ancoms 266 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  -> 
( ( x  -  A )  +  A
)  e.  ( ZZ>= `  ( B  +  A
) ) )
873adant2 1000 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
95, 8eqeltrrd 2217 . . . . . 6  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) )
1093expib 1184 . . . . 5  |-  ( A  e.  ZZ  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  ->  x  e.  ( ZZ>= `  ( B  +  A
) ) ) )
1110adantr 274 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) ) )
12 eluzelcn 9337 . . . . . 6  |-  ( x  e.  ( ZZ>= `  ( B  +  A )
)  ->  x  e.  CC )
1312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  ->  x  e.  CC )
)
14 eluzsub 9355 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ( ZZ>= `  ( B  +  A ) ) )  ->  ( x  -  A )  e.  (
ZZ>= `  B ) )
15143expia 1183 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1615ancoms 266 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1713, 16jcad 305 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) ) )
1811, 17impbid 128 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  <->  x  e.  ( ZZ>=
`  ( B  +  A ) ) ) )
1918abbi1dv 2259 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) }  =  ( ZZ>= `  ( B  +  A )
) )
201, 19syl5eq 2184 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2125   {crab 2420   ` cfv 5123  (class class class)co 5774   CCcc 7618    + caddc 7623    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  seq3shft  10610
  Copyright terms: Public domain W3C validator