ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftuz Unicode version

Theorem shftuz 11323
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2517 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
) }
2 simp2 1022 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  CC )
3 zcn 9447 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  CC )
433ad2ant1 1042 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  A  e.  CC )
52, 4npcand 8457 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  =  x )
6 eluzadd 9747 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  ( ZZ>= `  B )  /\  A  e.  ZZ )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
76ancoms 268 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  -> 
( ( x  -  A )  +  A
)  e.  ( ZZ>= `  ( B  +  A
) ) )
873adant2 1040 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
95, 8eqeltrrd 2307 . . . . . 6  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) )
1093expib 1230 . . . . 5  |-  ( A  e.  ZZ  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  ->  x  e.  ( ZZ>= `  ( B  +  A
) ) ) )
1110adantr 276 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) ) )
12 eluzelcn 9729 . . . . . 6  |-  ( x  e.  ( ZZ>= `  ( B  +  A )
)  ->  x  e.  CC )
1312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  ->  x  e.  CC )
)
14 eluzsub 9748 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ( ZZ>= `  ( B  +  A ) ) )  ->  ( x  -  A )  e.  (
ZZ>= `  B ) )
15143expia 1229 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1615ancoms 268 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1713, 16jcad 307 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) ) )
1811, 17impbid 129 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  <->  x  e.  ( ZZ>=
`  ( B  +  A ) ) ) )
1918abbi1dv 2349 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) }  =  ( ZZ>= `  ( B  +  A )
) )
201, 19eqtrid 2274 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   ` cfv 5317  (class class class)co 6000   CCcc 7993    + caddc 7998    - cmin 8313   ZZcz 9442   ZZ>=cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  seq3shft  11344
  Copyright terms: Public domain W3C validator