ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftuz Unicode version

Theorem shftuz 10828
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2464 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
) }
2 simp2 998 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  CC )
3 zcn 9260 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  CC )
433ad2ant1 1018 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  A  e.  CC )
52, 4npcand 8274 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  =  x )
6 eluzadd 9558 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  ( ZZ>= `  B )  /\  A  e.  ZZ )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
76ancoms 268 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  -> 
( ( x  -  A )  +  A
)  e.  ( ZZ>= `  ( B  +  A
) ) )
873adant2 1016 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
95, 8eqeltrrd 2255 . . . . . 6  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) )
1093expib 1206 . . . . 5  |-  ( A  e.  ZZ  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  ->  x  e.  ( ZZ>= `  ( B  +  A
) ) ) )
1110adantr 276 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) ) )
12 eluzelcn 9541 . . . . . 6  |-  ( x  e.  ( ZZ>= `  ( B  +  A )
)  ->  x  e.  CC )
1312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  ->  x  e.  CC )
)
14 eluzsub 9559 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ( ZZ>= `  ( B  +  A ) ) )  ->  ( x  -  A )  e.  (
ZZ>= `  B ) )
15143expia 1205 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1615ancoms 268 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1713, 16jcad 307 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) ) )
1811, 17impbid 129 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  <->  x  e.  ( ZZ>=
`  ( B  +  A ) ) ) )
1918abbi1dv 2297 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) }  =  ( ZZ>= `  ( B  +  A )
) )
201, 19eqtrid 2222 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   {crab 2459   ` cfv 5218  (class class class)co 5877   CCcc 7811    + caddc 7816    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  seq3shft  10849
  Copyright terms: Public domain W3C validator