ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftuz Unicode version

Theorem shftuz 10961
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2481 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
) }
2 simp2 1000 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  CC )
3 zcn 9322 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  CC )
433ad2ant1 1020 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  A  e.  CC )
52, 4npcand 8334 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  =  x )
6 eluzadd 9621 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  ( ZZ>= `  B )  /\  A  e.  ZZ )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
76ancoms 268 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  -> 
( ( x  -  A )  +  A
)  e.  ( ZZ>= `  ( B  +  A
) ) )
873adant2 1018 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  (
( x  -  A
)  +  A )  e.  ( ZZ>= `  ( B  +  A )
) )
95, 8eqeltrrd 2271 . . . . . 6  |-  ( ( A  e.  ZZ  /\  x  e.  CC  /\  (
x  -  A )  e.  ( ZZ>= `  B
) )  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) )
1093expib 1208 . . . . 5  |-  ( A  e.  ZZ  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) )  ->  x  e.  ( ZZ>= `  ( B  +  A
) ) ) )
1110adantr 276 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  ->  x  e.  ( ZZ>= `  ( B  +  A ) ) ) )
12 eluzelcn 9603 . . . . . 6  |-  ( x  e.  ( ZZ>= `  ( B  +  A )
)  ->  x  e.  CC )
1312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  ->  x  e.  CC )
)
14 eluzsub 9622 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ( ZZ>= `  ( B  +  A ) ) )  ->  ( x  -  A )  e.  (
ZZ>= `  B ) )
15143expia 1207 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1615ancoms 268 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  -  A
)  e.  ( ZZ>= `  B ) ) )
1713, 16jcad 307 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  ( B  +  A ) )  -> 
( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) ) )
1811, 17impbid 129 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  CC  /\  ( x  -  A )  e.  ( ZZ>= `  B )
)  <->  x  e.  ( ZZ>=
`  ( B  +  A ) ) ) )
1918abbi1dv 2313 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  ( ZZ>= `  B ) ) }  =  ( ZZ>= `  ( B  +  A )
) )
201, 19eqtrid 2238 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  A )  e.  (
ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179   {crab 2476   ` cfv 5254  (class class class)co 5918   CCcc 7870    + caddc 7875    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  seq3shft  10982
  Copyright terms: Public domain W3C validator