Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbi1dv | GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
abbildv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abbi1dv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbildv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) |
3 | abeq1 2276 | . 2 ⊢ ({𝑥 ∣ 𝜓} = 𝐴 ↔ ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: abidnf 2894 csbtt 3057 csbvarg 3073 csbie2g 3095 abvor0dc 3432 iinxsng 3939 shftuz 10759 |
Copyright terms: Public domain | W3C validator |