| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi1dv | GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| abbildv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abbi1dv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbildv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | alrimiv 1897 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) |
| 3 | abeq1 2315 | . 2 ⊢ ({𝑥 ∣ 𝜓} = 𝐴 ↔ ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2176 {cab 2191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: abidnf 2941 csbtt 3105 csbvarg 3121 csbie2g 3144 abvor0dc 3484 iinxsng 4001 shftuz 11128 |
| Copyright terms: Public domain | W3C validator |