| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi1dv | GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| abbildv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abbi1dv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbildv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | alrimiv 1898 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) |
| 3 | abeq1 2317 | . 2 ⊢ ({𝑥 ∣ 𝜓} = 𝐴 ↔ ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2178 {cab 2193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: abidnf 2948 csbtt 3113 csbvarg 3129 csbie2g 3152 abvor0dc 3492 iinxsng 4015 shftuz 11243 |
| Copyright terms: Public domain | W3C validator |