| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi1dv | GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| abbildv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abbi1dv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbildv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) |
| 3 | abeq1 2306 | . 2 ⊢ ({𝑥 ∣ 𝜓} = 𝐴 ↔ ∀𝑥(𝜓 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: abidnf 2932 csbtt 3096 csbvarg 3112 csbie2g 3135 abvor0dc 3474 iinxsng 3990 shftuz 10982 |
| Copyright terms: Public domain | W3C validator |