ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv GIF version

Theorem abbi1dv 2309
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abbi1dv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1885 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abeq1 2299 . 2 ({𝑥𝜓} = 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 134 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2160  {cab 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185
This theorem is referenced by:  abidnf  2920  csbtt  3084  csbvarg  3100  csbie2g  3122  abvor0dc  3461  iinxsng  3975  shftuz  10857
  Copyright terms: Public domain W3C validator