ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv GIF version

Theorem abbi1dv 2286
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abbi1dv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1862 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abeq1 2276 . 2 ({𝑥𝜓} = 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 133 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by:  abidnf  2894  csbtt  3057  csbvarg  3073  csbie2g  3095  abvor0dc  3432  iinxsng  3939  shftuz  10759
  Copyright terms: Public domain W3C validator