| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq0 | GIF version | ||
| Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.) |
| Ref | Expression |
|---|---|
| abeq0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 1981 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | albii 1494 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 3 | nfv 1552 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝜑 | |
| 4 | 3 | sb8 1880 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑) |
| 5 | eq0 3483 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 6 | df-clab 2193 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 7 | 6 | notbii 670 | . . . 4 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑) |
| 8 | 7 | albii 1494 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 9 | 5, 8 | bitri 184 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 10 | 2, 4, 9 | 3bitr4ri 213 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1371 = wceq 1373 [wsb 1786 ∈ wcel 2177 {cab 2192 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-nul 3465 |
| This theorem is referenced by: opprc 3846 |
| Copyright terms: Public domain | W3C validator |