| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abeq0 | GIF version | ||
| Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| abeq0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbn 1971 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | albii 1484 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) | 
| 3 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝜑 | |
| 4 | 3 | sb8 1870 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑) | 
| 5 | eq0 3469 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 6 | df-clab 2183 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 7 | 6 | notbii 669 | . . . 4 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑) | 
| 8 | 7 | albii 1484 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) | 
| 9 | 5, 8 | bitri 184 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) | 
| 10 | 2, 4, 9 | 3bitr4ri 213 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1362 = wceq 1364 [wsb 1776 ∈ wcel 2167 {cab 2182 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 | 
| This theorem is referenced by: opprc 3829 | 
| Copyright terms: Public domain | W3C validator |