ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq0 GIF version

Theorem abeq0 3490
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
abeq0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem abeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbn 1979 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
21albii 1492 . 2 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
3 nfv 1550 . . 3 𝑦 ¬ 𝜑
43sb8 1878 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)
5 eq0 3478 . . 3 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
6 df-clab 2191 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
76notbii 669 . . . 4 𝑦 ∈ {𝑥𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑)
87albii 1492 . . 3 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
95, 8bitri 184 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
102, 4, 93bitr4ri 213 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1370   = wceq 1372  [wsb 1784  wcel 2175  {cab 2190  c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by:  opprc  3839
  Copyright terms: Public domain W3C validator