| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq0 | GIF version | ||
| Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.) |
| Ref | Expression |
|---|---|
| abeq0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 1979 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | albii 1492 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 3 | nfv 1550 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝜑 | |
| 4 | 3 | sb8 1878 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑) |
| 5 | eq0 3478 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 6 | df-clab 2191 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 7 | 6 | notbii 669 | . . . 4 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑) |
| 8 | 7 | albii 1492 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 9 | 5, 8 | bitri 184 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 10 | 2, 4, 9 | 3bitr4ri 213 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1370 = wceq 1372 [wsb 1784 ∈ wcel 2175 {cab 2190 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: opprc 3839 |
| Copyright terms: Public domain | W3C validator |