ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1 GIF version

Theorem abeq1 2276
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2275 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 eqcom 2167 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
3 bicom 139 . . 3 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
43albii 1458 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝑥𝐴𝜑))
51, 2, 43bitr4i 211 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by:  abbi1dv  2286  disj  3457  euabsn2  3645  dm0rn0  4821  dffo3  5632
  Copyright terms: Public domain W3C validator