ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo3 Unicode version

Theorem dffo3 5575
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
dffo3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dffo3
StepHypRef Expression
1 dffo2 5357 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 ffn 5280 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
3 fnrnfv 5476 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
43eqeq1d 2149 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  =  B  <->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
52, 4syl 14 . . . 4  |-  ( F : A --> B  -> 
( ran  F  =  B 
<->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
6 dfbi2 386 . . . . . . 7  |-  ( ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
7 simpr 109 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  =  ( F `  x ) )
8 ffvelrn 5561 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
98adantr 274 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  ( F `  x )  e.  B
)
107, 9eqeltrd 2217 . . . . . . . . . 10  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  e.  B )
1110exp31 362 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x  e.  A  ->  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1211rexlimdv 2551 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1312biantrurd 303 . . . . . . 7  |-  ( F : A --> B  -> 
( ( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) ) )
146, 13bitr4id 198 . . . . . 6  |-  ( F : A --> B  -> 
( ( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B )  <-> 
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
1514albidv 1797 . . . . 5  |-  ( F : A --> B  -> 
( A. y ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
16 abeq1 2250 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B  <->  A. y
( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B ) )
17 df-ral 2422 . . . . 5  |-  ( A. y  e.  B  E. x  e.  A  y  =  ( F `  x )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) )
1815, 16, 173bitr4g 222 . . . 4  |-  ( F : A --> B  -> 
( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
195, 18bitrd 187 . . 3  |-  ( F : A --> B  -> 
( ran  F  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2019pm5.32i 450 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
211, 20bitri 183 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   ran crn 4548    Fn wfn 5126   -->wf 5127   -onto->wfo 5129   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139
This theorem is referenced by:  dffo4  5576  foco2  5663  fcofo  5693  foov  5925  0ct  7000  ctmlemr  7001  ctm  7002  ctssdclemn0  7003  ctssdccl  7004  enumctlemm  7007  cnref1o  9469  ctiunctlemfo  11988  ioocosf1o  12983
  Copyright terms: Public domain W3C validator