Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffo3 | Unicode version |
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
dffo3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 5414 | . 2 | |
2 | ffn 5337 | . . . . 5 | |
3 | fnrnfv 5533 | . . . . . 6 | |
4 | 3 | eqeq1d 2174 | . . . . 5 |
5 | 2, 4 | syl 14 | . . . 4 |
6 | dfbi2 386 | . . . . . . 7 | |
7 | simpr 109 | . . . . . . . . . . 11 | |
8 | ffvelrn 5618 | . . . . . . . . . . . 12 | |
9 | 8 | adantr 274 | . . . . . . . . . . 11 |
10 | 7, 9 | eqeltrd 2243 | . . . . . . . . . 10 |
11 | 10 | exp31 362 | . . . . . . . . 9 |
12 | 11 | rexlimdv 2582 | . . . . . . . 8 |
13 | 12 | biantrurd 303 | . . . . . . 7 |
14 | 6, 13 | bitr4id 198 | . . . . . 6 |
15 | 14 | albidv 1812 | . . . . 5 |
16 | abeq1 2276 | . . . . 5 | |
17 | df-ral 2449 | . . . . 5 | |
18 | 15, 16, 17 | 3bitr4g 222 | . . . 4 |
19 | 5, 18 | bitrd 187 | . . 3 |
20 | 19 | pm5.32i 450 | . 2 |
21 | 1, 20 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 crn 4605 wfn 5183 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: dffo4 5633 foco2 5722 fcofo 5752 foov 5988 0ct 7072 ctmlemr 7073 ctm 7074 ctssdclemn0 7075 ctssdccl 7076 enumctlemm 7079 cnref1o 9588 1arith 12297 ctiunctlemfo 12372 ioocosf1o 13415 |
Copyright terms: Public domain | W3C validator |