| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffo3 | Unicode version | ||
| Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
| Ref | Expression |
|---|---|
| dffo3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 5524 |
. 2
| |
| 2 | ffn 5445 |
. . . . 5
| |
| 3 | fnrnfv 5648 |
. . . . . 6
| |
| 4 | 3 | eqeq1d 2216 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | dfbi2 388 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . . . . 11
| |
| 8 | ffvelcdm 5736 |
. . . . . . . . . . . 12
| |
| 9 | 8 | adantr 276 |
. . . . . . . . . . 11
|
| 10 | 7, 9 | eqeltrd 2284 |
. . . . . . . . . 10
|
| 11 | 10 | exp31 364 |
. . . . . . . . 9
|
| 12 | 11 | rexlimdv 2624 |
. . . . . . . 8
|
| 13 | 12 | biantrurd 305 |
. . . . . . 7
|
| 14 | 6, 13 | bitr4id 199 |
. . . . . 6
|
| 15 | 14 | albidv 1848 |
. . . . 5
|
| 16 | abeq1 2317 |
. . . . 5
| |
| 17 | df-ral 2491 |
. . . . 5
| |
| 18 | 15, 16, 17 | 3bitr4g 223 |
. . . 4
|
| 19 | 5, 18 | bitrd 188 |
. . 3
|
| 20 | 19 | pm5.32i 454 |
. 2
|
| 21 | 1, 20 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 |
| This theorem is referenced by: dffo4 5751 foco2 5845 fcofo 5876 foov 6116 0ct 7235 ctmlemr 7236 ctm 7237 ctssdclemn0 7238 ctssdccl 7239 enumctlemm 7242 cnref1o 9807 nninfctlemfo 12476 1arith 12805 ctiunctlemfo 12925 znf1o 14528 ioocosf1o 15441 mpodvdsmulf1o 15577 |
| Copyright terms: Public domain | W3C validator |