| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffo3 | Unicode version | ||
| Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
| Ref | Expression |
|---|---|
| dffo3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 5502 |
. 2
| |
| 2 | ffn 5425 |
. . . . 5
| |
| 3 | fnrnfv 5625 |
. . . . . 6
| |
| 4 | 3 | eqeq1d 2214 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | dfbi2 388 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . . . . 11
| |
| 8 | ffvelcdm 5713 |
. . . . . . . . . . . 12
| |
| 9 | 8 | adantr 276 |
. . . . . . . . . . 11
|
| 10 | 7, 9 | eqeltrd 2282 |
. . . . . . . . . 10
|
| 11 | 10 | exp31 364 |
. . . . . . . . 9
|
| 12 | 11 | rexlimdv 2622 |
. . . . . . . 8
|
| 13 | 12 | biantrurd 305 |
. . . . . . 7
|
| 14 | 6, 13 | bitr4id 199 |
. . . . . 6
|
| 15 | 14 | albidv 1847 |
. . . . 5
|
| 16 | abeq1 2315 |
. . . . 5
| |
| 17 | df-ral 2489 |
. . . . 5
| |
| 18 | 15, 16, 17 | 3bitr4g 223 |
. . . 4
|
| 19 | 5, 18 | bitrd 188 |
. . 3
|
| 20 | 19 | pm5.32i 454 |
. 2
|
| 21 | 1, 20 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 |
| This theorem is referenced by: dffo4 5728 foco2 5822 fcofo 5853 foov 6093 0ct 7209 ctmlemr 7210 ctm 7211 ctssdclemn0 7212 ctssdccl 7213 enumctlemm 7216 cnref1o 9772 nninfctlemfo 12361 1arith 12690 ctiunctlemfo 12810 znf1o 14413 ioocosf1o 15326 mpodvdsmulf1o 15462 |
| Copyright terms: Public domain | W3C validator |