ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo3 Unicode version

Theorem dffo3 5705
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
dffo3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dffo3
StepHypRef Expression
1 dffo2 5480 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 ffn 5403 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
3 fnrnfv 5603 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
43eqeq1d 2202 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  =  B  <->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
52, 4syl 14 . . . 4  |-  ( F : A --> B  -> 
( ran  F  =  B 
<->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
6 dfbi2 388 . . . . . . 7  |-  ( ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
7 simpr 110 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  =  ( F `  x ) )
8 ffvelcdm 5691 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
98adantr 276 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  ( F `  x )  e.  B
)
107, 9eqeltrd 2270 . . . . . . . . . 10  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  e.  B )
1110exp31 364 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x  e.  A  ->  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1211rexlimdv 2610 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1312biantrurd 305 . . . . . . 7  |-  ( F : A --> B  -> 
( ( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) ) )
146, 13bitr4id 199 . . . . . 6  |-  ( F : A --> B  -> 
( ( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B )  <-> 
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
1514albidv 1835 . . . . 5  |-  ( F : A --> B  -> 
( A. y ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
16 abeq1 2303 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B  <->  A. y
( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B ) )
17 df-ral 2477 . . . . 5  |-  ( A. y  e.  B  E. x  e.  A  y  =  ( F `  x )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) )
1815, 16, 173bitr4g 223 . . . 4  |-  ( F : A --> B  -> 
( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
195, 18bitrd 188 . . 3  |-  ( F : A --> B  -> 
( ran  F  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2019pm5.32i 454 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
211, 20bitri 184 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   ran crn 4660    Fn wfn 5249   -->wf 5250   -onto->wfo 5252   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262
This theorem is referenced by:  dffo4  5706  foco2  5796  fcofo  5827  foov  6065  0ct  7166  ctmlemr  7167  ctm  7168  ctssdclemn0  7169  ctssdccl  7170  enumctlemm  7173  cnref1o  9716  nninfctlemfo  12177  1arith  12505  ctiunctlemfo  12596  znf1o  14139  ioocosf1o  14989
  Copyright terms: Public domain W3C validator