| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | Unicode version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 |
|
| Ref | Expression |
|---|---|
| pwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 |
. 2
| |
| 2 | pwexg 4214 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: p0ex 4222 pp0ex 4223 ord3ex 4224 abexssex 6191 fnpm 6724 exmidpw 6978 pw1on 7309 pw1dom2 7310 pw1nel3 7314 sucpw1ne3 7315 sucpw1nel3 7316 npex 7557 axcnex 7943 pnfxr 8096 mnfxr 8100 ixxex 9991 prdsvallem 12974 istopon 14333 dmtopon 14343 fncld 14418 |
| Copyright terms: Public domain | W3C validator |