ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex Unicode version

Theorem pwex 4266
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1  |-  A  e. 
_V
Assertion
Ref Expression
pwex  |-  ~P A  e.  _V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2  |-  A  e. 
_V
2 pwexg 4263 . 2  |-  ( A  e.  _V  ->  ~P A  e.  _V )
31, 2ax-mp 5 1  |-  ~P A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  p0ex  4271  pp0ex  4272  ord3ex  4273  abexssex  6268  fnpm  6801  exmidpw  7066  pw1on  7407  pw1dom2  7408  pw1nel3  7412  sucpw1ne3  7413  sucpw1nel3  7414  npex  7656  axcnex  8042  pnfxr  8195  mnfxr  8199  ixxex  10091  prdsvallem  13300  istopon  14681  dmtopon  14691  fncld  14766  pw1map  16320  pw1mapen  16321
  Copyright terms: Public domain W3C validator