| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | Unicode version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 |
|
| Ref | Expression |
|---|---|
| pwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 |
. 2
| |
| 2 | pwexg 4240 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: p0ex 4248 pp0ex 4249 ord3ex 4250 abexssex 6233 fnpm 6766 exmidpw 7031 pw1on 7372 pw1dom2 7373 pw1nel3 7377 sucpw1ne3 7378 sucpw1nel3 7379 npex 7621 axcnex 8007 pnfxr 8160 mnfxr 8164 ixxex 10056 prdsvallem 13219 istopon 14600 dmtopon 14610 fncld 14685 pw1map 16134 pw1mapen 16135 |
| Copyright terms: Public domain | W3C validator |