| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | Unicode version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 |
|
| Ref | Expression |
|---|---|
| pwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 |
. 2
| |
| 2 | pwexg 4223 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: p0ex 4231 pp0ex 4232 ord3ex 4233 abexssex 6209 fnpm 6742 exmidpw 7004 pw1on 7337 pw1dom2 7338 pw1nel3 7342 sucpw1ne3 7343 sucpw1nel3 7344 npex 7585 axcnex 7971 pnfxr 8124 mnfxr 8128 ixxex 10020 prdsvallem 13075 istopon 14456 dmtopon 14466 fncld 14541 |
| Copyright terms: Public domain | W3C validator |