| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwex | Unicode version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 |
|
| Ref | Expression |
|---|---|
| pwex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 |
. 2
| |
| 2 | pwexg 4224 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: p0ex 4232 pp0ex 4233 ord3ex 4234 abexssex 6210 fnpm 6743 exmidpw 7005 pw1on 7338 pw1dom2 7339 pw1nel3 7343 sucpw1ne3 7344 sucpw1nel3 7345 npex 7586 axcnex 7972 pnfxr 8125 mnfxr 8129 ixxex 10021 prdsvallem 13104 istopon 14485 dmtopon 14495 fncld 14570 |
| Copyright terms: Public domain | W3C validator |