![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwex | Unicode version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pwex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | pwexg 4198 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 |
This theorem is referenced by: p0ex 4206 pp0ex 4207 ord3ex 4208 abexssex 6150 fnpm 6682 exmidpw 6936 pw1on 7255 pw1dom2 7256 pw1nel3 7260 sucpw1ne3 7261 sucpw1nel3 7262 npex 7502 axcnex 7888 pnfxr 8040 mnfxr 8044 ixxex 9929 istopon 13970 dmtopon 13980 fncld 14055 |
Copyright terms: Public domain | W3C validator |