ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex Unicode version

Theorem pwex 4212
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
pwex.1  |-  A  e. 
_V
Assertion
Ref Expression
pwex  |-  ~P A  e.  _V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2  |-  A  e. 
_V
2 pwexg 4209 . 2  |-  ( A  e.  _V  ->  ~P A  e.  _V )
31, 2ax-mp 5 1  |-  ~P A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  p0ex  4217  pp0ex  4218  ord3ex  4219  abexssex  6177  fnpm  6710  exmidpw  6964  pw1on  7286  pw1dom2  7287  pw1nel3  7291  sucpw1ne3  7292  sucpw1nel3  7293  npex  7533  axcnex  7919  pnfxr  8072  mnfxr  8076  ixxex  9965  istopon  14181  dmtopon  14191  fncld  14266
  Copyright terms: Public domain W3C validator