Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgval | Unicode version |
Description: The topology generated by a basis. See also tgval2 12390 and tgval3 12397. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . 2 | |
2 | uniexg 4394 | . . 3 | |
3 | abssexg 4138 | . . 3 | |
4 | uniin 3788 | . . . . . . 7 | |
5 | sstr 3132 | . . . . . . 7 | |
6 | 4, 5 | mpan2 422 | . . . . . 6 |
7 | ssin 3325 | . . . . . 6 | |
8 | 6, 7 | sylibr 133 | . . . . 5 |
9 | 8 | ss2abi 3196 | . . . 4 |
10 | ssexg 4099 | . . . 4 | |
11 | 9, 10 | mpan 421 | . . 3 |
12 | 2, 3, 11 | 3syl 17 | . 2 |
13 | ineq1 3297 | . . . . . 6 | |
14 | 13 | unieqd 3779 | . . . . 5 |
15 | 14 | sseq2d 3154 | . . . 4 |
16 | 15 | abbidv 2272 | . . 3 |
17 | df-topgen 12311 | . . 3 | |
18 | 16, 17 | fvmptg 5537 | . 2 |
19 | 1, 12, 18 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cab 2140 cvv 2709 cin 3097 wss 3098 cpw 3539 cuni 3768 cfv 5163 ctg 12305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-topgen 12311 |
This theorem is referenced by: tgvalex 12389 tgval2 12390 eltg 12391 |
Copyright terms: Public domain | W3C validator |