ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval Unicode version

Theorem tgval 13209
Description: The topology generated by a basis. See also tgval2 14638 and tgval3 14645. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Distinct variable groups:    x, B    x, V

Proof of Theorem tgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2788 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 uniexg 4504 . . 3  |-  ( B  e.  V  ->  U. B  e.  _V )
3 abssexg 4242 . . 3  |-  ( U. B  e.  _V  ->  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V )
4 uniin 3884 . . . . . . 7  |-  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x )
5 sstr 3209 . . . . . . 7  |-  ( ( x  C_  U. ( B  i^i  ~P x )  /\  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x ) )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
64, 5mpan2 425 . . . . . 6  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
7 ssin 3403 . . . . . 6  |-  ( ( x  C_  U. B  /\  x  C_  U. ~P x
)  <->  x  C_  ( U. B  i^i  U. ~P x
) )
86, 7sylibr 134 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  (
x  C_  U. B  /\  x  C_  U. ~P x
) )
98ss2abi 3273 . . . 4  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }
10 ssexg 4199 . . . 4  |-  ( ( { x  |  x 
C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  /\  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }  e.  _V )  ->  { x  |  x  C_ 
U. ( B  i^i  ~P x ) }  e.  _V )
119, 10mpan 424 . . 3  |-  ( { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
122, 3, 113syl 17 . 2  |-  ( B  e.  V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
13 ineq1 3375 . . . . . 6  |-  ( y  =  B  ->  (
y  i^i  ~P x
)  =  ( B  i^i  ~P x ) )
1413unieqd 3875 . . . . 5  |-  ( y  =  B  ->  U. (
y  i^i  ~P x
)  =  U. ( B  i^i  ~P x ) )
1514sseq2d 3231 . . . 4  |-  ( y  =  B  ->  (
x  C_  U. (
y  i^i  ~P x
)  <->  x  C_  U. ( B  i^i  ~P x ) ) )
1615abbidv 2325 . . 3  |-  ( y  =  B  ->  { x  |  x  C_  U. (
y  i^i  ~P x
) }  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
17 df-topgen 13207 . . 3  |-  topGen  =  ( y  e.  _V  |->  { x  |  x  C_  U. ( y  i^i  ~P x ) } )
1816, 17fvmptg 5678 . 2  |-  ( ( B  e.  _V  /\  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )  ->  ( topGen `  B )  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
191, 12, 18syl2anc 411 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776    i^i cin 3173    C_ wss 3174   ~Pcpw 3626   U.cuni 3864   ` cfv 5290   topGenctg 13201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207
This theorem is referenced by:  tgvalex  13210  tgval2  14638  eltg  14639
  Copyright terms: Public domain W3C validator