ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval Unicode version

Theorem tgval 12876
Description: The topology generated by a basis. See also tgval2 14230 and tgval3 14237. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Distinct variable groups:    x, B    x, V

Proof of Theorem tgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 uniexg 4471 . . 3  |-  ( B  e.  V  ->  U. B  e.  _V )
3 abssexg 4212 . . 3  |-  ( U. B  e.  _V  ->  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V )
4 uniin 3856 . . . . . . 7  |-  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x )
5 sstr 3188 . . . . . . 7  |-  ( ( x  C_  U. ( B  i^i  ~P x )  /\  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x ) )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
64, 5mpan2 425 . . . . . 6  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
7 ssin 3382 . . . . . 6  |-  ( ( x  C_  U. B  /\  x  C_  U. ~P x
)  <->  x  C_  ( U. B  i^i  U. ~P x
) )
86, 7sylibr 134 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  (
x  C_  U. B  /\  x  C_  U. ~P x
) )
98ss2abi 3252 . . . 4  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }
10 ssexg 4169 . . . 4  |-  ( ( { x  |  x 
C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  /\  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }  e.  _V )  ->  { x  |  x  C_ 
U. ( B  i^i  ~P x ) }  e.  _V )
119, 10mpan 424 . . 3  |-  ( { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
122, 3, 113syl 17 . 2  |-  ( B  e.  V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
13 ineq1 3354 . . . . . 6  |-  ( y  =  B  ->  (
y  i^i  ~P x
)  =  ( B  i^i  ~P x ) )
1413unieqd 3847 . . . . 5  |-  ( y  =  B  ->  U. (
y  i^i  ~P x
)  =  U. ( B  i^i  ~P x ) )
1514sseq2d 3210 . . . 4  |-  ( y  =  B  ->  (
x  C_  U. (
y  i^i  ~P x
)  <->  x  C_  U. ( B  i^i  ~P x ) ) )
1615abbidv 2311 . . 3  |-  ( y  =  B  ->  { x  |  x  C_  U. (
y  i^i  ~P x
) }  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
17 df-topgen 12874 . . 3  |-  topGen  =  ( y  e.  _V  |->  { x  |  x  C_  U. ( y  i^i  ~P x ) } )
1816, 17fvmptg 5634 . 2  |-  ( ( B  e.  _V  /\  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )  ->  ( topGen `  B )  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
191, 12, 18syl2anc 411 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    i^i cin 3153    C_ wss 3154   ~Pcpw 3602   U.cuni 3836   ` cfv 5255   topGenctg 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-topgen 12874
This theorem is referenced by:  tgvalex  12877  tgval2  14230  eltg  14231
  Copyright terms: Public domain W3C validator