ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval Unicode version

Theorem tgval 12000
Description: The topology generated by a basis. See also tgval2 12002 and tgval3 12009. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Distinct variable groups:    x, B    x, V

Proof of Theorem tgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2652 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 uniexg 4299 . . 3  |-  ( B  e.  V  ->  U. B  e.  _V )
3 abssexg 4046 . . 3  |-  ( U. B  e.  _V  ->  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V )
4 uniin 3703 . . . . . . 7  |-  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x )
5 sstr 3055 . . . . . . 7  |-  ( ( x  C_  U. ( B  i^i  ~P x )  /\  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x ) )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
64, 5mpan2 419 . . . . . 6  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
7 ssin 3245 . . . . . 6  |-  ( ( x  C_  U. B  /\  x  C_  U. ~P x
)  <->  x  C_  ( U. B  i^i  U. ~P x
) )
86, 7sylibr 133 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  (
x  C_  U. B  /\  x  C_  U. ~P x
) )
98ss2abi 3116 . . . 4  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }
10 ssexg 4007 . . . 4  |-  ( ( { x  |  x 
C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  /\  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }  e.  _V )  ->  { x  |  x  C_ 
U. ( B  i^i  ~P x ) }  e.  _V )
119, 10mpan 418 . . 3  |-  ( { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
122, 3, 113syl 17 . 2  |-  ( B  e.  V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
13 ineq1 3217 . . . . . 6  |-  ( y  =  B  ->  (
y  i^i  ~P x
)  =  ( B  i^i  ~P x ) )
1413unieqd 3694 . . . . 5  |-  ( y  =  B  ->  U. (
y  i^i  ~P x
)  =  U. ( B  i^i  ~P x ) )
1514sseq2d 3077 . . . 4  |-  ( y  =  B  ->  (
x  C_  U. (
y  i^i  ~P x
)  <->  x  C_  U. ( B  i^i  ~P x ) ) )
1615abbidv 2217 . . 3  |-  ( y  =  B  ->  { x  |  x  C_  U. (
y  i^i  ~P x
) }  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
17 df-topgen 11923 . . 3  |-  topGen  =  ( y  e.  _V  |->  { x  |  x  C_  U. ( y  i^i  ~P x ) } )
1816, 17fvmptg 5429 . 2  |-  ( ( B  e.  _V  /\  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )  ->  ( topGen `  B )  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
191, 12, 18syl2anc 406 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {cab 2086   _Vcvv 2641    i^i cin 3020    C_ wss 3021   ~Pcpw 3457   U.cuni 3683   ` cfv 5059   topGenctg 11917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-topgen 11923
This theorem is referenced by:  tgvalex  12001  tgval2  12002  eltg  12003
  Copyright terms: Public domain W3C validator