| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| ss2abi.1 |
|
| Ref | Expression |
|---|---|
| ss2abi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ab 3252 |
. 2
| |
| 2 | ss2abi.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 |
| This theorem is referenced by: abssi 3259 rabssab 3272 pwsnss 3834 iinuniss 4000 pwpwssunieq 4006 abssexg 4216 imassrn 5021 imadiflem 5338 imainlem 5340 fabexg 5448 f1oabexg 5519 tfrcllemssrecs 6419 mapex 6722 tgval 12964 tgvalex 12965 fngsum 13090 igsumvalx 13091 isghm 13449 |
| Copyright terms: Public domain | W3C validator |