| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| ss2abi.1 |
|
| Ref | Expression |
|---|---|
| ss2abi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ab 3251 |
. 2
| |
| 2 | ss2abi.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 |
| This theorem is referenced by: abssi 3258 rabssab 3271 pwsnss 3833 iinuniss 3999 pwpwssunieq 4005 abssexg 4215 imassrn 5020 imadiflem 5337 imainlem 5339 fabexg 5445 f1oabexg 5516 tfrcllemssrecs 6410 mapex 6713 tgval 12933 tgvalex 12934 fngsum 13031 igsumvalx 13032 isghm 13373 |
| Copyright terms: Public domain | W3C validator |