ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi Unicode version

Theorem ss2abi 3214
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ss2abi  |-  { x  |  ph }  C_  { x  |  ps }

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3210 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
2 ss2abi.1 . 2  |-  ( ph  ->  ps )
31, 2mpgbir 1441 1  |-  { x  |  ph }  C_  { x  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2151    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  abssi  3217  rabssab  3230  pwsnss  3783  iinuniss  3948  pwpwssunieq  3954  abssexg  4161  imassrn  4957  imadiflem  5267  imainlem  5269  fabexg  5375  f1oabexg  5444  tfrcllemssrecs  6320  mapex  6620  tgval  12689  tgvalex  12690
  Copyright terms: Public domain W3C validator