ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi Unicode version

Theorem ss2abi 3273
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ss2abi  |-  { x  |  ph }  C_  { x  |  ps }

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3269 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
2 ss2abi.1 . 2  |-  ( ph  ->  ps )
31, 2mpgbir 1477 1  |-  { x  |  ph }  C_  { x  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2193    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187
This theorem is referenced by:  abssi  3276  rabssab  3289  pwsnss  3858  iinuniss  4024  pwpwssunieq  4030  abssexg  4242  imassrn  5052  imadiflem  5372  imainlem  5374  fabexg  5485  f1oabexg  5556  tfrcllemssrecs  6461  mapex  6764  tgval  13209  tgvalex  13210  fngsum  13335  igsumvalx  13336  isghm  13694
  Copyright terms: Public domain W3C validator