ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi Unicode version

Theorem ss2abi 3265
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ss2abi  |-  { x  |  ph }  C_  { x  |  ps }

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3261 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
2 ss2abi.1 . 2  |-  ( ph  ->  ps )
31, 2mpgbir 1476 1  |-  { x  |  ph }  C_  { x  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2191    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179
This theorem is referenced by:  abssi  3268  rabssab  3281  pwsnss  3844  iinuniss  4010  pwpwssunieq  4016  abssexg  4226  imassrn  5033  imadiflem  5353  imainlem  5355  fabexg  5463  f1oabexg  5534  tfrcllemssrecs  6438  mapex  6741  tgval  13094  tgvalex  13095  fngsum  13220  igsumvalx  13221  isghm  13579
  Copyright terms: Public domain W3C validator