| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| ss2abi.1 |
|
| Ref | Expression |
|---|---|
| ss2abi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ab 3269 |
. 2
| |
| 2 | ss2abi.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1477 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 |
| This theorem is referenced by: abssi 3276 rabssab 3289 pwsnss 3858 iinuniss 4024 pwpwssunieq 4030 abssexg 4242 imassrn 5052 imadiflem 5372 imainlem 5374 fabexg 5485 f1oabexg 5556 tfrcllemssrecs 6461 mapex 6764 tgval 13209 tgvalex 13210 fngsum 13335 igsumvalx 13336 isghm 13694 |
| Copyright terms: Public domain | W3C validator |