| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| ss2abi.1 |
|
| Ref | Expression |
|---|---|
| ss2abi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ab 3260 |
. 2
| |
| 2 | ss2abi.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 |
| This theorem is referenced by: abssi 3267 rabssab 3280 pwsnss 3843 iinuniss 4009 pwpwssunieq 4015 abssexg 4225 imassrn 5032 imadiflem 5352 imainlem 5354 fabexg 5462 f1oabexg 5533 tfrcllemssrecs 6437 mapex 6740 tgval 13065 tgvalex 13066 fngsum 13191 igsumvalx 13192 isghm 13550 |
| Copyright terms: Public domain | W3C validator |