| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexd | Unicode version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 |
|
| Ref | Expression |
|---|---|
| pwexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 |
. 2
| |
| 2 | pwexg 4225 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: fival 7074 tgvalex 13128 issubm 13337 issubg 13542 subgex 13545 issubrng 13994 issubrg 14016 lssex 14149 lsssetm 14151 lspfval 14183 lspex 14190 sraval 14232 toponsspwpwg 14527 cnpfval 14700 blfvalps 14890 |
| Copyright terms: Public domain | W3C validator |