| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexd | Unicode version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 |
|
| Ref | Expression |
|---|---|
| pwexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 |
. 2
| |
| 2 | pwexg 4264 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: fival 7137 tgvalex 13296 issubm 13505 issubg 13710 subgex 13713 issubrng 14163 issubrg 14185 lssex 14318 lsssetm 14320 lspfval 14352 lspex 14359 sraval 14401 toponsspwpwg 14696 cnpfval 14869 blfvalps 15059 |
| Copyright terms: Public domain | W3C validator |