ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexd Unicode version

Theorem pwexd 4215
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pwexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
pwexd  |-  ( ph  ->  ~P A  e.  _V )

Proof of Theorem pwexd
StepHypRef Expression
1 pwexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 pwexg 4214 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763   ~Pcpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  fival  7040  tgvalex  12953  issubm  13151  issubg  13350  subgex  13353  issubrng  13802  issubrg  13824  lssex  13957  lsssetm  13959  lspfval  13991  lspex  13998  sraval  14040  toponsspwpwg  14305  cnpfval  14478  blfvalps  14668
  Copyright terms: Public domain W3C validator