ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexd Unicode version

Theorem pwexd 4226
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pwexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
pwexd  |-  ( ph  ->  ~P A  e.  _V )

Proof of Theorem pwexd
StepHypRef Expression
1 pwexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 pwexg 4225 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  fival  7074  tgvalex  13128  issubm  13337  issubg  13542  subgex  13545  issubrng  13994  issubrg  14016  lssex  14149  lsssetm  14151  lspfval  14183  lspex  14190  sraval  14232  toponsspwpwg  14527  cnpfval  14700  blfvalps  14890
  Copyright terms: Public domain W3C validator