ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexd Unicode version

Theorem pwexd 4210
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pwexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
pwexd  |-  ( ph  ->  ~P A  e.  _V )

Proof of Theorem pwexd
StepHypRef Expression
1 pwexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 pwexg 4209 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  fival  7029  tgvalex  12874  issubm  13044  issubg  13243  subgex  13246  issubrng  13695  issubrg  13717  lssex  13850  lsssetm  13852  lspfval  13884  lspex  13891  sraval  13933  toponsspwpwg  14190  cnpfval  14363  blfvalps  14553
  Copyright terms: Public domain W3C validator