ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmex Unicode version

Theorem pmex 6408
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 262 . . 3  |-  ( ( Fun  f  /\  f  C_  ( A  X.  B
) )  <->  ( f  C_  ( A  X.  B
)  /\  Fun  f ) )
21abbii 2203 . 2  |-  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B ) ) }  =  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }
3 xpexg 4552 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
4 abssexg 4017 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }  e.  _V )
53, 4syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f  C_  ( A  X.  B )  /\  Fun  f ) }  e.  _V )
62, 5syl5eqel 2174 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438   {cab 2074   _Vcvv 2619    C_ wss 2999    X. cxp 4436   Fun wfun 5009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-opab 3900  df-xp 4444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator