ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmex Unicode version

Theorem pmex 6619
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 264 . . 3  |-  ( ( Fun  f  /\  f  C_  ( A  X.  B
) )  <->  ( f  C_  ( A  X.  B
)  /\  Fun  f ) )
21abbii 2282 . 2  |-  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B ) ) }  =  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }
3 xpexg 4718 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
4 abssexg 4161 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }  e.  _V )
53, 4syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f  C_  ( A  X.  B )  /\  Fun  f ) }  e.  _V )
62, 5eqeltrid 2253 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   {cab 2151   _Vcvv 2726    C_ wss 3116    X. cxp 4602   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-opab 4044  df-xp 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator