Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pmex | Unicode version |
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.) |
Ref | Expression |
---|---|
pmex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 | |
2 | 1 | abbii 2282 | . 2 |
3 | xpexg 4718 | . . 3 | |
4 | abssexg 4161 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | 2, 5 | eqeltrid 2253 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cab 2151 cvv 2726 wss 3116 cxp 4602 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-opab 4044 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |