ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmex Unicode version

Theorem pmex 6653
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 266 . . 3  |-  ( ( Fun  f  /\  f  C_  ( A  X.  B
) )  <->  ( f  C_  ( A  X.  B
)  /\  Fun  f ) )
21abbii 2293 . 2  |-  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B ) ) }  =  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }
3 xpexg 4741 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
4 abssexg 4183 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  { f  |  ( f  C_  ( A  X.  B
)  /\  Fun  f ) }  e.  _V )
53, 4syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( f  C_  ( A  X.  B )  /\  Fun  f ) }  e.  _V )
62, 5eqeltrid 2264 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B
) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   {cab 2163   _Vcvv 2738    C_ wss 3130    X. cxp 4625   Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-opab 4066  df-xp 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator