ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemur Unicode version

Theorem ivthinclemur 15226
Description: Lemma for ivthinc 15230. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Distinct variable groups:    A, q, w   
x, A, y, q    B, q, w    x, B, y    w, F    x, F, y    R, q, x, y    w, U    ph, q,
r, x, y    w, r
Allowed substitution hints:    ph( w)    A( r)    B( r)    D( x, y, w, r, q)    R( w, r)    U( x, y, r, q)    F( r, q)    L( x, y, w, r, q)

Proof of Theorem ivthinclemur
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 481 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 481 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 110 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  r  e.  R )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemuopn 15225 . . . 4  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  E. q  e.  R  q  <  r )
2524ex 115 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  ->  E. q  e.  R  q  <  r ) )
26 simpllr 534 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
275ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  e.  RR )
28 fveq2 5599 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2928eleq1d 2276 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
3013ralrimiva 2581 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3130ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
32 fveq2 5599 . . . . . . . . . . 11  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
3332breq2d 4071 . . . . . . . . . 10  |-  ( w  =  q  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  q ) ) )
3433, 22elrab2 2939 . . . . . . . . 9  |-  ( q  e.  R  <->  ( q  e.  ( A [,] B
)  /\  U  <  ( F `  q ) ) )
3534simplbi 274 . . . . . . . 8  |-  ( q  e.  R  ->  q  e.  ( A [,] B
) )
3635ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
3729, 31, 36rspcdva 2889 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
38 fveq2 5599 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3938eleq1d 2276 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
4039, 31, 26rspcdva 2889 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
4134simprbi 275 . . . . . . 7  |-  ( q  e.  R  ->  U  <  ( F `  q
) )
4241ad2antlr 489 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  q )
)
43 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  <  r
)
44 breq2 4063 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
45 fveq2 5599 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4645breq2d 4071 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4744, 46imbi12d 234 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
48 breq1 4062 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4928breq1d 4069 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
5048, 49imbi12d 234 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
5150ralbidv 2508 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5218expr 375 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5352ralrimiva 2581 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5453ralrimiva 2581 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5554ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5651, 55, 36rspcdva 2889 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5747, 56, 26rspcdva 2889 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5843, 57mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5927, 37, 40, 42, 58lttrd 8233 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  r )
)
60 fveq2 5599 . . . . . . 7  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
6160breq2d 4071 . . . . . 6  |-  ( w  =  r  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  r ) ) )
6261, 22elrab2 2939 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  ( A [,] B
)  /\  U  <  ( F `  r ) ) )
6326, 59, 62sylanbrc 417 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  R
)
6463rexlimdva2 2628 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( E. q  e.  R  q  <  r  ->  r  e.  R ) )
6525, 64impbid 129 . 2  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
6665ralrimiva 2581 1  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959    < clt 8142   [,]cicc 10048   -cn->ccncf 15157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-icc 10052  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-cncf 15158
This theorem is referenced by:  ivthinclemex  15229
  Copyright terms: Public domain W3C validator