ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemur Unicode version

Theorem ivthinclemur 12786
Description: Lemma for ivthinc 12790. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Distinct variable groups:    A, q, w   
x, A, y, q    B, q, w    x, B, y    w, F    x, F, y    R, q, x, y    w, U    ph, q,
r, x, y    w, r
Allowed substitution hints:    ph( w)    A( r)    B( r)    D( x, y, w, r, q)    R( w, r)    U( x, y, r, q)    F( r, q)    L( x, y, w, r, q)

Proof of Theorem ivthinclemur
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 468 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 472 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 472 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 109 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  r  e.  R )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemuopn 12785 . . . 4  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  E. q  e.  R  q  <  r )
2524ex 114 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  ->  E. q  e.  R  q  <  r ) )
26 simpllr 523 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
275ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  e.  RR )
28 fveq2 5421 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2928eleq1d 2208 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
3013ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3130ad3antrrr 483 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
32 fveq2 5421 . . . . . . . . . . 11  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
3332breq2d 3941 . . . . . . . . . 10  |-  ( w  =  q  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  q ) ) )
3433, 22elrab2 2843 . . . . . . . . 9  |-  ( q  e.  R  <->  ( q  e.  ( A [,] B
)  /\  U  <  ( F `  q ) ) )
3534simplbi 272 . . . . . . . 8  |-  ( q  e.  R  ->  q  e.  ( A [,] B
) )
3635ad2antlr 480 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
3729, 31, 36rspcdva 2794 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
38 fveq2 5421 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3938eleq1d 2208 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
4039, 31, 26rspcdva 2794 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
4134simprbi 273 . . . . . . 7  |-  ( q  e.  R  ->  U  <  ( F `  q
) )
4241ad2antlr 480 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  q )
)
43 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  <  r
)
44 breq2 3933 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
45 fveq2 5421 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4645breq2d 3941 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4744, 46imbi12d 233 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
48 breq1 3932 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4928breq1d 3939 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
5048, 49imbi12d 233 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
5150ralbidv 2437 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5218expr 372 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5352ralrimiva 2505 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5453ralrimiva 2505 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5554ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5651, 55, 36rspcdva 2794 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5747, 56, 26rspcdva 2794 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5843, 57mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5927, 37, 40, 42, 58lttrd 7888 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  r )
)
60 fveq2 5421 . . . . . . 7  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
6160breq2d 3941 . . . . . 6  |-  ( w  =  r  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  r ) ) )
6261, 22elrab2 2843 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  ( A [,] B
)  /\  U  <  ( F `  r ) ) )
6326, 59, 62sylanbrc 413 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  R
)
6463rexlimdva2 2552 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( E. q  e.  R  q  <  r  ->  r  e.  R ) )
6525, 64impbid 128 . 2  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
6665ralrimiva 2505 1  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420    C_ wss 3071   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619    < clt 7800   [,]cicc 9674   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-icc 9678  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-cncf 12727
This theorem is referenced by:  ivthinclemex  12789
  Copyright terms: Public domain W3C validator