ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemur Unicode version

Theorem ivthinclemur 15111
Description: Lemma for ivthinc 15115. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Distinct variable groups:    A, q, w   
x, A, y, q    B, q, w    x, B, y    w, F    x, F, y    R, q, x, y    w, U    ph, q,
r, x, y    w, r
Allowed substitution hints:    ph( w)    A( r)    B( r)    D( x, y, w, r, q)    R( w, r)    U( x, y, r, q)    F( r, q)    L( x, y, w, r, q)

Proof of Theorem ivthinclemur
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 481 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 481 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 110 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  r  e.  R )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemuopn 15110 . . . 4  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  E. q  e.  R  q  <  r )
2524ex 115 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  ->  E. q  e.  R  q  <  r ) )
26 simpllr 534 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
275ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  e.  RR )
28 fveq2 5576 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2928eleq1d 2274 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
3013ralrimiva 2579 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3130ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
32 fveq2 5576 . . . . . . . . . . 11  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
3332breq2d 4056 . . . . . . . . . 10  |-  ( w  =  q  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  q ) ) )
3433, 22elrab2 2932 . . . . . . . . 9  |-  ( q  e.  R  <->  ( q  e.  ( A [,] B
)  /\  U  <  ( F `  q ) ) )
3534simplbi 274 . . . . . . . 8  |-  ( q  e.  R  ->  q  e.  ( A [,] B
) )
3635ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
3729, 31, 36rspcdva 2882 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
38 fveq2 5576 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3938eleq1d 2274 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
4039, 31, 26rspcdva 2882 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
4134simprbi 275 . . . . . . 7  |-  ( q  e.  R  ->  U  <  ( F `  q
) )
4241ad2antlr 489 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  q )
)
43 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  <  r
)
44 breq2 4048 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
45 fveq2 5576 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4645breq2d 4056 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4744, 46imbi12d 234 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
48 breq1 4047 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4928breq1d 4054 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
5048, 49imbi12d 234 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
5150ralbidv 2506 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5218expr 375 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5352ralrimiva 2579 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5453ralrimiva 2579 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5554ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5651, 55, 36rspcdva 2882 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5747, 56, 26rspcdva 2882 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5843, 57mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5927, 37, 40, 42, 58lttrd 8198 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  r )
)
60 fveq2 5576 . . . . . . 7  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
6160breq2d 4056 . . . . . 6  |-  ( w  =  r  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  r ) ) )
6261, 22elrab2 2932 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  ( A [,] B
)  /\  U  <  ( F `  r ) ) )
6326, 59, 62sylanbrc 417 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  R
)
6463rexlimdva2 2626 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( E. q  e.  R  q  <  r  ->  r  e.  R ) )
6525, 64impbid 129 . 2  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
6665ralrimiva 2579 1  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924    < clt 8107   [,]cicc 10013   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-icc 10017  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-cncf 15043
This theorem is referenced by:  ivthinclemex  15114
  Copyright terms: Public domain W3C validator