ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemur Unicode version

Theorem ivthinclemur 14818
Description: Lemma for ivthinc 14822. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Distinct variable groups:    A, q, w   
x, A, y, q    B, q, w    x, B, y    w, F    x, F, y    R, q, x, y    w, U    ph, q,
r, x, y    w, r
Allowed substitution hints:    ph( w)    A( r)    B( r)    D( x, y, w, r, q)    R( w, r)    U( x, y, r, q)    F( r, q)    L( x, y, w, r, q)

Proof of Theorem ivthinclemur
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 481 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 481 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  r  e.  R
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 110 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  r  e.  R )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemuopn 14817 . . . 4  |-  ( ( ( ph  /\  r  e.  ( A [,] B
) )  /\  r  e.  R )  ->  E. q  e.  R  q  <  r )
2524ex 115 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  ->  E. q  e.  R  q  <  r ) )
26 simpllr 534 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
275ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  e.  RR )
28 fveq2 5555 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2928eleq1d 2262 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
3013ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3130ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
32 fveq2 5555 . . . . . . . . . . 11  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
3332breq2d 4042 . . . . . . . . . 10  |-  ( w  =  q  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  q ) ) )
3433, 22elrab2 2920 . . . . . . . . 9  |-  ( q  e.  R  <->  ( q  e.  ( A [,] B
)  /\  U  <  ( F `  q ) ) )
3534simplbi 274 . . . . . . . 8  |-  ( q  e.  R  ->  q  e.  ( A [,] B
) )
3635ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
3729, 31, 36rspcdva 2870 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
38 fveq2 5555 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3938eleq1d 2262 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
4039, 31, 26rspcdva 2870 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
4134simprbi 275 . . . . . . 7  |-  ( q  e.  R  ->  U  <  ( F `  q
) )
4241ad2antlr 489 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  q )
)
43 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  q  <  r
)
44 breq2 4034 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
45 fveq2 5555 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4645breq2d 4042 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4744, 46imbi12d 234 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
48 breq1 4033 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4928breq1d 4040 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
5048, 49imbi12d 234 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
5150ralbidv 2494 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5218expr 375 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5352ralrimiva 2567 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5453ralrimiva 2567 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5554ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5651, 55, 36rspcdva 2870 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5747, 56, 26rspcdva 2870 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5843, 57mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5927, 37, 40, 42, 58lttrd 8147 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  U  <  ( F `  r )
)
60 fveq2 5555 . . . . . . 7  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
6160breq2d 4042 . . . . . 6  |-  ( w  =  r  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  r ) ) )
6261, 22elrab2 2920 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  ( A [,] B
)  /\  U  <  ( F `  r ) ) )
6326, 59, 62sylanbrc 417 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( A [,] B ) )  /\  q  e.  R )  /\  q  <  r )  ->  r  e.  R
)
6463rexlimdva2 2614 . . 3  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( E. q  e.  R  q  <  r  ->  r  e.  R ) )
6525, 64impbid 129 . 2  |-  ( (
ph  /\  r  e.  ( A [,] B ) )  ->  ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
6665ralrimiva 2567 1  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873    < clt 8056   [,]cicc 9960   -cn->ccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-icc 9964  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-cncf 14750
This theorem is referenced by:  ivthinclemex  14821
  Copyright terms: Public domain W3C validator