| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimax2gtrilemstep | Unicode version | ||
| Description: Lemma for fimax2gtri 6998. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| fimax2gtri.po |
|
| fimax2gtri.tri |
|
| fimax2gtri.fin |
|
| fimax2gtri.n0 |
|
| fimax2gtri.ufin |
|
| fimax2gtri.uss |
|
| fimax2gtri.za |
|
| fimax2gtri.va |
|
| fimax2gtri.vu |
|
| fimax2gtri.zb |
|
| Ref | Expression |
|---|---|
| fimax2gtrilemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimax2gtri.va |
. . 3
| |
| 2 | fimax2gtri.za |
. . 3
| |
| 3 | fimax2gtri.po |
. . . 4
| |
| 4 | fimax2gtri.tri |
. . . 4
| |
| 5 | 3, 4, 2, 1 | tridc 6996 |
. . 3
|
| 6 | 1, 2, 5 | ifcldcd 3608 |
. 2
|
| 7 | simplr 528 |
. . . . . . . 8
| |
| 8 | simpr 110 |
. . . . . . . . . . . 12
| |
| 9 | 8 | iftrued 3578 |
. . . . . . . . . . 11
|
| 10 | 9 | breq1d 4054 |
. . . . . . . . . 10
|
| 11 | 10 | biimpa 296 |
. . . . . . . . 9
|
| 12 | 11 | adantllr 481 |
. . . . . . . 8
|
| 13 | 3 | ad2antrr 488 |
. . . . . . . . . 10
|
| 14 | 2 | ad2antrr 488 |
. . . . . . . . . 10
|
| 15 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 16 | fimax2gtri.uss |
. . . . . . . . . . . 12
| |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 18 | simplr 528 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sseldd 3194 |
. . . . . . . . . 10
|
| 20 | potr 4355 |
. . . . . . . . . 10
| |
| 21 | 13, 14, 15, 19, 20 | syl13anc 1252 |
. . . . . . . . 9
|
| 22 | 21 | adantr 276 |
. . . . . . . 8
|
| 23 | 7, 12, 22 | mp2and 433 |
. . . . . . 7
|
| 24 | fimax2gtri.zb |
. . . . . . . . . 10
| |
| 25 | breq2 4048 |
. . . . . . . . . . . 12
| |
| 26 | 25 | notbid 669 |
. . . . . . . . . . 11
|
| 27 | 26 | cbvralv 2738 |
. . . . . . . . . 10
|
| 28 | 24, 27 | sylib 122 |
. . . . . . . . 9
|
| 29 | 28 | r19.21bi 2594 |
. . . . . . . 8
|
| 30 | 29 | ad2antrr 488 |
. . . . . . 7
|
| 31 | 23, 30 | pm2.65da 663 |
. . . . . 6
|
| 32 | 29 | adantr 276 |
. . . . . . 7
|
| 33 | simpr 110 |
. . . . . . . . . 10
| |
| 34 | 33 | iffalsed 3581 |
. . . . . . . . 9
|
| 35 | 34 | breq1d 4054 |
. . . . . . . 8
|
| 36 | 35 | adantlr 477 |
. . . . . . 7
|
| 37 | 32, 36 | mtbird 675 |
. . . . . 6
|
| 38 | exmiddc 838 |
. . . . . . . 8
| |
| 39 | 5, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | adantr 276 |
. . . . . 6
|
| 41 | 31, 37, 40 | mpjaodan 800 |
. . . . 5
|
| 42 | 41 | ralrimiva 2579 |
. . . 4
|
| 43 | breq2 4048 |
. . . . . 6
| |
| 44 | 43 | notbid 669 |
. . . . 5
|
| 45 | 44 | cbvralv 2738 |
. . . 4
|
| 46 | 42, 45 | sylib 122 |
. . 3
|
| 47 | 3 | adantr 276 |
. . . . . . 7
|
| 48 | 1 | adantr 276 |
. . . . . . 7
|
| 49 | poirr 4354 |
. . . . . . 7
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | 9 | breq1d 4054 |
. . . . . 6
|
| 52 | 50, 51 | mtbird 675 |
. . . . 5
|
| 53 | 34 | breq1d 4054 |
. . . . . 6
|
| 54 | 33, 53 | mtbird 675 |
. . . . 5
|
| 55 | 52, 54, 39 | mpjaodan 800 |
. . . 4
|
| 56 | breq2 4048 |
. . . . . . 7
| |
| 57 | 56 | notbid 669 |
. . . . . 6
|
| 58 | 57 | ralsng 3673 |
. . . . 5
|
| 59 | 1, 58 | syl 14 |
. . . 4
|
| 60 | 55, 59 | mpbird 167 |
. . 3
|
| 61 | ralun 3355 |
. . 3
| |
| 62 | 46, 60, 61 | syl2anc 411 |
. 2
|
| 63 | breq1 4047 |
. . . . 5
| |
| 64 | 63 | notbid 669 |
. . . 4
|
| 65 | 64 | ralbidv 2506 |
. . 3
|
| 66 | 65 | rspcev 2877 |
. 2
|
| 67 | 6, 62, 66 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-po 4343 |
| This theorem is referenced by: fimax2gtri 6998 |
| Copyright terms: Public domain | W3C validator |