Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fimax2gtrilemstep | Unicode version |
Description: Lemma for fimax2gtri 6867. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
Ref | Expression |
---|---|
fimax2gtri.po | |
fimax2gtri.tri | |
fimax2gtri.fin | |
fimax2gtri.n0 | |
fimax2gtri.ufin | |
fimax2gtri.uss | |
fimax2gtri.za | |
fimax2gtri.va | |
fimax2gtri.vu | |
fimax2gtri.zb |
Ref | Expression |
---|---|
fimax2gtrilemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimax2gtri.va | . . 3 | |
2 | fimax2gtri.za | . . 3 | |
3 | fimax2gtri.po | . . . 4 | |
4 | fimax2gtri.tri | . . . 4 | |
5 | 3, 4, 2, 1 | tridc 6865 | . . 3 DECID |
6 | 1, 2, 5 | ifcldcd 3555 | . 2 |
7 | simplr 520 | . . . . . . . 8 | |
8 | simpr 109 | . . . . . . . . . . . 12 | |
9 | 8 | iftrued 3527 | . . . . . . . . . . 11 |
10 | 9 | breq1d 3992 | . . . . . . . . . 10 |
11 | 10 | biimpa 294 | . . . . . . . . 9 |
12 | 11 | adantllr 473 | . . . . . . . 8 |
13 | 3 | ad2antrr 480 | . . . . . . . . . 10 |
14 | 2 | ad2antrr 480 | . . . . . . . . . 10 |
15 | 1 | ad2antrr 480 | . . . . . . . . . 10 |
16 | fimax2gtri.uss | . . . . . . . . . . . 12 | |
17 | 16 | ad2antrr 480 | . . . . . . . . . . 11 |
18 | simplr 520 | . . . . . . . . . . 11 | |
19 | 17, 18 | sseldd 3143 | . . . . . . . . . 10 |
20 | potr 4286 | . . . . . . . . . 10 | |
21 | 13, 14, 15, 19, 20 | syl13anc 1230 | . . . . . . . . 9 |
22 | 21 | adantr 274 | . . . . . . . 8 |
23 | 7, 12, 22 | mp2and 430 | . . . . . . 7 |
24 | fimax2gtri.zb | . . . . . . . . . 10 | |
25 | breq2 3986 | . . . . . . . . . . . 12 | |
26 | 25 | notbid 657 | . . . . . . . . . . 11 |
27 | 26 | cbvralv 2692 | . . . . . . . . . 10 |
28 | 24, 27 | sylib 121 | . . . . . . . . 9 |
29 | 28 | r19.21bi 2554 | . . . . . . . 8 |
30 | 29 | ad2antrr 480 | . . . . . . 7 |
31 | 23, 30 | pm2.65da 651 | . . . . . 6 |
32 | 29 | adantr 274 | . . . . . . 7 |
33 | simpr 109 | . . . . . . . . . 10 | |
34 | 33 | iffalsed 3530 | . . . . . . . . 9 |
35 | 34 | breq1d 3992 | . . . . . . . 8 |
36 | 35 | adantlr 469 | . . . . . . 7 |
37 | 32, 36 | mtbird 663 | . . . . . 6 |
38 | exmiddc 826 | . . . . . . . 8 DECID | |
39 | 5, 38 | syl 14 | . . . . . . 7 |
40 | 39 | adantr 274 | . . . . . 6 |
41 | 31, 37, 40 | mpjaodan 788 | . . . . 5 |
42 | 41 | ralrimiva 2539 | . . . 4 |
43 | breq2 3986 | . . . . . 6 | |
44 | 43 | notbid 657 | . . . . 5 |
45 | 44 | cbvralv 2692 | . . . 4 |
46 | 42, 45 | sylib 121 | . . 3 |
47 | 3 | adantr 274 | . . . . . . 7 |
48 | 1 | adantr 274 | . . . . . . 7 |
49 | poirr 4285 | . . . . . . 7 | |
50 | 47, 48, 49 | syl2anc 409 | . . . . . 6 |
51 | 9 | breq1d 3992 | . . . . . 6 |
52 | 50, 51 | mtbird 663 | . . . . 5 |
53 | 34 | breq1d 3992 | . . . . . 6 |
54 | 33, 53 | mtbird 663 | . . . . 5 |
55 | 52, 54, 39 | mpjaodan 788 | . . . 4 |
56 | breq2 3986 | . . . . . . 7 | |
57 | 56 | notbid 657 | . . . . . 6 |
58 | 57 | ralsng 3616 | . . . . 5 |
59 | 1, 58 | syl 14 | . . . 4 |
60 | 55, 59 | mpbird 166 | . . 3 |
61 | ralun 3304 | . . 3 | |
62 | 46, 60, 61 | syl2anc 409 | . 2 |
63 | breq1 3985 | . . . . 5 | |
64 | 63 | notbid 657 | . . . 4 |
65 | 64 | ralbidv 2466 | . . 3 |
66 | 65 | rspcev 2830 | . 2 |
67 | 6, 62, 66 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 wne 2336 wral 2444 wrex 2445 cun 3114 wss 3116 c0 3409 cif 3520 csn 3576 class class class wbr 3982 wpo 4272 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 |
This theorem is referenced by: fimax2gtri 6867 |
Copyright terms: Public domain | W3C validator |