Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fimax2gtrilemstep | Unicode version |
Description: Lemma for fimax2gtri 6879. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
Ref | Expression |
---|---|
fimax2gtri.po | |
fimax2gtri.tri | |
fimax2gtri.fin | |
fimax2gtri.n0 | |
fimax2gtri.ufin | |
fimax2gtri.uss | |
fimax2gtri.za | |
fimax2gtri.va | |
fimax2gtri.vu | |
fimax2gtri.zb |
Ref | Expression |
---|---|
fimax2gtrilemstep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimax2gtri.va | . . 3 | |
2 | fimax2gtri.za | . . 3 | |
3 | fimax2gtri.po | . . . 4 | |
4 | fimax2gtri.tri | . . . 4 | |
5 | 3, 4, 2, 1 | tridc 6877 | . . 3 DECID |
6 | 1, 2, 5 | ifcldcd 3561 | . 2 |
7 | simplr 525 | . . . . . . . 8 | |
8 | simpr 109 | . . . . . . . . . . . 12 | |
9 | 8 | iftrued 3533 | . . . . . . . . . . 11 |
10 | 9 | breq1d 3999 | . . . . . . . . . 10 |
11 | 10 | biimpa 294 | . . . . . . . . 9 |
12 | 11 | adantllr 478 | . . . . . . . 8 |
13 | 3 | ad2antrr 485 | . . . . . . . . . 10 |
14 | 2 | ad2antrr 485 | . . . . . . . . . 10 |
15 | 1 | ad2antrr 485 | . . . . . . . . . 10 |
16 | fimax2gtri.uss | . . . . . . . . . . . 12 | |
17 | 16 | ad2antrr 485 | . . . . . . . . . . 11 |
18 | simplr 525 | . . . . . . . . . . 11 | |
19 | 17, 18 | sseldd 3148 | . . . . . . . . . 10 |
20 | potr 4293 | . . . . . . . . . 10 | |
21 | 13, 14, 15, 19, 20 | syl13anc 1235 | . . . . . . . . 9 |
22 | 21 | adantr 274 | . . . . . . . 8 |
23 | 7, 12, 22 | mp2and 431 | . . . . . . 7 |
24 | fimax2gtri.zb | . . . . . . . . . 10 | |
25 | breq2 3993 | . . . . . . . . . . . 12 | |
26 | 25 | notbid 662 | . . . . . . . . . . 11 |
27 | 26 | cbvralv 2696 | . . . . . . . . . 10 |
28 | 24, 27 | sylib 121 | . . . . . . . . 9 |
29 | 28 | r19.21bi 2558 | . . . . . . . 8 |
30 | 29 | ad2antrr 485 | . . . . . . 7 |
31 | 23, 30 | pm2.65da 656 | . . . . . 6 |
32 | 29 | adantr 274 | . . . . . . 7 |
33 | simpr 109 | . . . . . . . . . 10 | |
34 | 33 | iffalsed 3536 | . . . . . . . . 9 |
35 | 34 | breq1d 3999 | . . . . . . . 8 |
36 | 35 | adantlr 474 | . . . . . . 7 |
37 | 32, 36 | mtbird 668 | . . . . . 6 |
38 | exmiddc 831 | . . . . . . . 8 DECID | |
39 | 5, 38 | syl 14 | . . . . . . 7 |
40 | 39 | adantr 274 | . . . . . 6 |
41 | 31, 37, 40 | mpjaodan 793 | . . . . 5 |
42 | 41 | ralrimiva 2543 | . . . 4 |
43 | breq2 3993 | . . . . . 6 | |
44 | 43 | notbid 662 | . . . . 5 |
45 | 44 | cbvralv 2696 | . . . 4 |
46 | 42, 45 | sylib 121 | . . 3 |
47 | 3 | adantr 274 | . . . . . . 7 |
48 | 1 | adantr 274 | . . . . . . 7 |
49 | poirr 4292 | . . . . . . 7 | |
50 | 47, 48, 49 | syl2anc 409 | . . . . . 6 |
51 | 9 | breq1d 3999 | . . . . . 6 |
52 | 50, 51 | mtbird 668 | . . . . 5 |
53 | 34 | breq1d 3999 | . . . . . 6 |
54 | 33, 53 | mtbird 668 | . . . . 5 |
55 | 52, 54, 39 | mpjaodan 793 | . . . 4 |
56 | breq2 3993 | . . . . . . 7 | |
57 | 56 | notbid 662 | . . . . . 6 |
58 | 57 | ralsng 3623 | . . . . 5 |
59 | 1, 58 | syl 14 | . . . 4 |
60 | 55, 59 | mpbird 166 | . . 3 |
61 | ralun 3309 | . . 3 | |
62 | 46, 60, 61 | syl2anc 409 | . 2 |
63 | breq1 3992 | . . . . 5 | |
64 | 63 | notbid 662 | . . . 4 |
65 | 64 | ralbidv 2470 | . . 3 |
66 | 65 | rspcev 2834 | . 2 |
67 | 6, 62, 66 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 wne 2340 wral 2448 wrex 2449 cun 3119 wss 3121 c0 3414 cif 3526 csn 3583 class class class wbr 3989 wpo 4279 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 |
This theorem is referenced by: fimax2gtri 6879 |
Copyright terms: Public domain | W3C validator |