ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss Unicode version

Theorem metss 12663
Description: Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metss  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metss
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopnval 12611 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
32adantr 274 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
4 metequiv.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 12611 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
65adantl 275 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
73, 6sseq12d 3128 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  ( topGen ` 
ran  ( ball `  C
) )  C_  ( topGen `
 ran  ( ball `  D ) ) ) )
8 blbas 12602 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  ran  ( ball `  C )  e. 
TopBases )
98adantr 274 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ran  ( ball `  C )  e. 
TopBases )
10 unirnbl 12592 . . . . 5  |-  ( C  e.  ( *Met `  X )  ->  U. ran  ( ball `  C )  =  X )
1110adantr 274 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  X )
12 unirnbl 12592 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
1312adantl 275 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  D )  =  X )
1411, 13eqtr4d 2175 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  U. ran  ( ball `  D ) )
15 tgss2 12248 . . 3  |-  ( ( ran  ( ball `  C
)  e.  TopBases  /\  U. ran  ( ball `  C
)  =  U. ran  ( ball `  D )
)  ->  ( ( topGen `
 ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
169, 14, 15syl2anc 408 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  (
( topGen `  ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
1711raleqdv 2632 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
18 blssex 12599 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  y )  <->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
1918adantll 467 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
)  <->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) )
2019imbi2d 229 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  (
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
2120ralbidv 2437 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
22 rpxr 9449 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
23 blelrn 12589 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
2422, 23syl3an3 1251 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
25 blcntr 12585 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  x  e.  ( x ( ball `  C
) r ) )
26 eleq2 2203 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
x  e.  y  <->  x  e.  ( x ( ball `  C ) r ) ) )
27 sseq2 3121 . . . . . . . . . . . . . 14  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x ( ball `  D ) s ) 
C_  y  <->  ( x
( ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
2827rexbidv 2438 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y 
<->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
2926, 28imbi12d 233 . . . . . . . . . . . 12  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3029rspcv 2785 . . . . . . . . . . 11  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( A. y  e.  ran  ( ball `  C ) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3130com23 78 . . . . . . . . . 10  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  ( A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) ) )
3224, 25, 31sylc 62 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
33323expa 1181 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) ) )
3433adantllr 472 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
3534ralrimdva 2512 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
36 blss 12597 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ran  ( ball `  C )  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
37363expb 1182 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  ( y  e. 
ran  ( ball `  C
)  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  C
) r )  C_  y )
3837adantlr 468 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  (
y  e.  ran  ( ball `  C )  /\  x  e.  y )
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
3938adantlr 468 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
40 r19.29 2569 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
) )
41 sstr 3105 . . . . . . . . . . . . . . . 16  |-  ( ( ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  (
x ( ball `  D
) s )  C_  y )
4241expcom 115 . . . . . . . . . . . . . . 15  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  ->  ( x (
ball `  D )
s )  C_  y
) )
4342reximdv 2533 . . . . . . . . . . . . . 14  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4443impcom 124 . . . . . . . . . . . . 13  |-  ( ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4544rexlimivw 2545 . . . . . . . . . . . 12  |-  ( E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4640, 45syl 14 . . . . . . . . . . 11  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y )
4746ex 114 . . . . . . . . . 10  |-  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
4839, 47syl5com 29 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4948expr 372 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( x  e.  y  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) ) )
5049com23 78 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5150ralrimdva 2512 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5235, 51impbid 128 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5321, 52bitrd 187 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5453ralbidva 2433 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5517, 54bitrd 187 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
567, 16, 553bitrd 213 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   U.cuni 3736   ran crn 4540   ` cfv 5123  (class class class)co 5774   RR*cxr 7799   RR+crp 9441   topGenctg 12135   *Metcxmet 12149   ballcbl 12151   MetOpencmopn 12154   TopBasesctb 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-bases 12210
This theorem is referenced by:  metequiv  12664  metss2  12667
  Copyright terms: Public domain W3C validator