| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metss | Unicode version | ||
| Description: Two ways of saying that
metric |
| Ref | Expression |
|---|---|
| metequiv.3 |
|
| metequiv.4 |
|
| Ref | Expression |
|---|---|
| metss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 |
. . . . 5
| |
| 2 | 1 | mopnval 14914 |
. . . 4
|
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | metequiv.4 |
. . . . 5
| |
| 5 | 4 | mopnval 14914 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | 3, 6 | sseq12d 3224 |
. 2
|
| 8 | blbas 14905 |
. . . 4
| |
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | unirnbl 14895 |
. . . . 5
| |
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | unirnbl 14895 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 11, 13 | eqtr4d 2241 |
. . 3
|
| 15 | tgss2 14551 |
. . 3
| |
| 16 | 9, 14, 15 | syl2anc 411 |
. 2
|
| 17 | 11 | raleqdv 2708 |
. . 3
|
| 18 | blssex 14902 |
. . . . . . . 8
| |
| 19 | 18 | adantll 476 |
. . . . . . 7
|
| 20 | 19 | imbi2d 230 |
. . . . . 6
|
| 21 | 20 | ralbidv 2506 |
. . . . 5
|
| 22 | rpxr 9783 |
. . . . . . . . . . 11
| |
| 23 | blelrn 14892 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | syl3an3 1285 |
. . . . . . . . . 10
|
| 25 | blcntr 14888 |
. . . . . . . . . 10
| |
| 26 | eleq2 2269 |
. . . . . . . . . . . . 13
| |
| 27 | sseq2 3217 |
. . . . . . . . . . . . . 14
| |
| 28 | 27 | rexbidv 2507 |
. . . . . . . . . . . . 13
|
| 29 | 26, 28 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 30 | 29 | rspcv 2873 |
. . . . . . . . . . 11
|
| 31 | 30 | com23 78 |
. . . . . . . . . 10
|
| 32 | 24, 25, 31 | sylc 62 |
. . . . . . . . 9
|
| 33 | 32 | 3expa 1206 |
. . . . . . . 8
|
| 34 | 33 | adantllr 481 |
. . . . . . 7
|
| 35 | 34 | ralrimdva 2586 |
. . . . . 6
|
| 36 | blss 14900 |
. . . . . . . . . . . . 13
| |
| 37 | 36 | 3expb 1207 |
. . . . . . . . . . . 12
|
| 38 | 37 | adantlr 477 |
. . . . . . . . . . 11
|
| 39 | 38 | adantlr 477 |
. . . . . . . . . 10
|
| 40 | r19.29 2643 |
. . . . . . . . . . . 12
| |
| 41 | sstr 3201 |
. . . . . . . . . . . . . . . 16
| |
| 42 | 41 | expcom 116 |
. . . . . . . . . . . . . . 15
|
| 43 | 42 | reximdv 2607 |
. . . . . . . . . . . . . 14
|
| 44 | 43 | impcom 125 |
. . . . . . . . . . . . 13
|
| 45 | 44 | rexlimivw 2619 |
. . . . . . . . . . . 12
|
| 46 | 40, 45 | syl 14 |
. . . . . . . . . . 11
|
| 47 | 46 | ex 115 |
. . . . . . . . . 10
|
| 48 | 39, 47 | syl5com 29 |
. . . . . . . . 9
|
| 49 | 48 | expr 375 |
. . . . . . . 8
|
| 50 | 49 | com23 78 |
. . . . . . 7
|
| 51 | 50 | ralrimdva 2586 |
. . . . . 6
|
| 52 | 35, 51 | impbid 129 |
. . . . 5
|
| 53 | 21, 52 | bitrd 188 |
. . . 4
|
| 54 | 53 | ralbidva 2502 |
. . 3
|
| 55 | 17, 54 | bitrd 188 |
. 2
|
| 56 | 7, 16, 55 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-bl 14308 df-mopn 14309 df-top 14470 df-bases 14515 |
| This theorem is referenced by: metequiv 14967 metss2 14970 |
| Copyright terms: Public domain | W3C validator |