ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss Unicode version

Theorem metss 13134
Description: Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metss  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metss
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopnval 13082 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
32adantr 274 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
4 metequiv.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 13082 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
65adantl 275 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
73, 6sseq12d 3173 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  ( topGen ` 
ran  ( ball `  C
) )  C_  ( topGen `
 ran  ( ball `  D ) ) ) )
8 blbas 13073 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  ran  ( ball `  C )  e. 
TopBases )
98adantr 274 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ran  ( ball `  C )  e. 
TopBases )
10 unirnbl 13063 . . . . 5  |-  ( C  e.  ( *Met `  X )  ->  U. ran  ( ball `  C )  =  X )
1110adantr 274 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  X )
12 unirnbl 13063 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
1312adantl 275 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  D )  =  X )
1411, 13eqtr4d 2201 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  U. ran  ( ball `  D ) )
15 tgss2 12719 . . 3  |-  ( ( ran  ( ball `  C
)  e.  TopBases  /\  U. ran  ( ball `  C
)  =  U. ran  ( ball `  D )
)  ->  ( ( topGen `
 ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
169, 14, 15syl2anc 409 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  (
( topGen `  ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
1711raleqdv 2667 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
18 blssex 13070 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  y )  <->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
1918adantll 468 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
)  <->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) )
2019imbi2d 229 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  (
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
2120ralbidv 2466 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
22 rpxr 9597 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
23 blelrn 13060 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
2422, 23syl3an3 1263 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
25 blcntr 13056 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  x  e.  ( x ( ball `  C
) r ) )
26 eleq2 2230 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
x  e.  y  <->  x  e.  ( x ( ball `  C ) r ) ) )
27 sseq2 3166 . . . . . . . . . . . . . 14  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x ( ball `  D ) s ) 
C_  y  <->  ( x
( ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
2827rexbidv 2467 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y 
<->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
2926, 28imbi12d 233 . . . . . . . . . . . 12  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3029rspcv 2826 . . . . . . . . . . 11  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( A. y  e.  ran  ( ball `  C ) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3130com23 78 . . . . . . . . . 10  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  ( A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) ) )
3224, 25, 31sylc 62 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
33323expa 1193 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) ) )
3433adantllr 473 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
3534ralrimdva 2546 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
36 blss 13068 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ran  ( ball `  C )  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
37363expb 1194 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  ( y  e. 
ran  ( ball `  C
)  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  C
) r )  C_  y )
3837adantlr 469 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  (
y  e.  ran  ( ball `  C )  /\  x  e.  y )
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
3938adantlr 469 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
40 r19.29 2603 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
) )
41 sstr 3150 . . . . . . . . . . . . . . . 16  |-  ( ( ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  (
x ( ball `  D
) s )  C_  y )
4241expcom 115 . . . . . . . . . . . . . . 15  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  ->  ( x (
ball `  D )
s )  C_  y
) )
4342reximdv 2567 . . . . . . . . . . . . . 14  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4443impcom 124 . . . . . . . . . . . . 13  |-  ( ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4544rexlimivw 2579 . . . . . . . . . . . 12  |-  ( E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4640, 45syl 14 . . . . . . . . . . 11  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y )
4746ex 114 . . . . . . . . . 10  |-  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
4839, 47syl5com 29 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4948expr 373 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( x  e.  y  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) ) )
5049com23 78 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5150ralrimdva 2546 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5235, 51impbid 128 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5321, 52bitrd 187 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5453ralbidva 2462 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5517, 54bitrd 187 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
567, 16, 553bitrd 213 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   U.cuni 3789   ran crn 4605   ` cfv 5188  (class class class)co 5842   RR*cxr 7932   RR+crp 9589   topGenctg 12571   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625   TopBasesctb 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-bases 12681
This theorem is referenced by:  metequiv  13135  metss2  13138
  Copyright terms: Public domain W3C validator